
A User Guide for the NIST Database Infrastructure for Mass
Spectrometry (DIMSpec) Toolkit

Jared M. Ragland and Benjamin J. Place

2023-08-08

Preface
The use of mass spectral libraries is essential for the confident identification and reporting
of analytical chemistry measurands, whether they be environmental contaminants or novel
compounds. Toward that end the US National Institute of Standards and Technology
provides a series of mass spectral databases in use at analytical research, development, and
contracting laboratories throughout the US. Contrasting with targeted methods, where
analyte identities and their mass spectral properties are known a priori are non-targeted
analysis (NTA) methods, where compound identity is unknown. Even when analytes are
“known” (i.e. their mass spectral properties have been
measured and reported in the literature) different
extraction and measurement methods may show slight
differences in mass spectral properties. The gold standard
for matching mass spectra is use of a library of mass
spectral standards, yet such standards are available only
for a small fraction of “known” analytes.

For analyte classes with decades of analytical study
(e.g. polychlorinated biphenyls, vitamins, etc.), such
“known” analytes are generally covered well by analytical
standards. This is not the case for analyte classes of more
recent interest (e.g. per- and polyfluorinated alkyl
substances). Research needs generally run ahead of
standards availability; paradigms such as NTA are
therefore necessary to assess analyte identity and
properties by identifying mass spectral patterns of both
the analyte itself and its fragmentation patterns. Analytes
characterized in this fashion can then be published for
identification in other methods and laboratories. As of
2023, the process of distributing such data still lags
behind many research needs.

This book describes a toolkit produced by the NIST
Chemical Sciences Division to capture data from high
resolution accurate mass spectrometric experiments in a
formal manner. The Database Infrastructure for Mass

Spectrometry (DIMSpec) allows for the creation of portable databases that tie such data
with sample and methodological metadata. DIMSpec uses SQLite, a common portable
database engine, for data storage and a collected set of data management and NTA tools
written in the R language. This includes the ability to rapidly iterate and launch new
databases to hold data for a particular project, analyte class of interest, or research
program, and results in a single database file that may be shared widely without restriction
on resulting use. When used with the associated tools, researchers can leverage NTA tools
in active use at NIST for quality assurance, identification of unknown analytes using
current state-of-the-science techniques, and to record their data and contribute back to the
research community. Only open access frameworks were used in the development of
DIMSpec.

We believe strongly in the public availability of and open access to research data and hope
that the toolkit described here can be of use in moving the NTA research community
toward a data structure amenable to sharing and reuse and move analytical chemistry data
for NTA toward the FAIR principles.

Sincerely,

Jared 1 and Ben 2

National Institute of Standards and Technology Material Measurement Laboratory
Chemical Sciences Division
1 Chemical Informatics Group, Research Biologist
2 Organic Chemical Metrology Group, Research Chemist

Introduction
In analytical chemistry, the objective of non-targeted analysis (NTA) is to detect and
identify unknown (generally organic) compounds using a combination of advanced
analytical instrumentation (e.g. high-resolution mass spectrometry) and computational
tools. For NTA using mass spectrometry, the use of reference libraries containing
fragmentation mass spectra of known compounds is essential to successfully identifying
unknown compounds in complex mixtures. However, due to the diversity of vendors of
mass spectrometers and mass spectrometry software, it is difficult to easily share mass
spectral data sets between laboratories using different instrument vendor software
packages while maintaining the quality and detail of complex data and metadata that
makes the mass spectra commutable and useful. Additionally, this diversity can also alter
fragmentation patterns as instrument engineering and method settings can differ between
analyses.

This report describes a set of tools developed in the NIST Chemical Sciences Division to
provide a database infrastructure for the management and use of NTA data and associated
metadata. In addition, as part of a NIST-wide effort to make data more Findable, Accessible,

https://sqlite.org/
https://www.r-project.org/
https://www.go-fair.org/

Interoperable, and Reusable (FAIR), the database and affiliated tools were designed using
only open-source resources that can be easily shared and reused by researchers within and
outside of NIST. The information provided in this report includes guidance for the setup,
population, and use of the database and its affiliated analysis tools. This effort has been
primarily supported by the Department of Defense Strategic Environmental Research and
Development Program (DOD-SERDP), project number ER20-1056. As that project focuses
on per- and polyfluoroalkyl substances (PFAS), DIMSpec is distributed with mass spectra
including compounds on the NIST Suspect List of Possible PFAS (Place, Benjamin J. 2021b)
as collected using the Non-Targeted Analysis Method Reporting Tool.

This toolkiti was developed as part of the NIST PFAS program in the Material Measurement
Laboratory’s Chemical Sciences Division. It is primarily developed in R and SQLite. The
remainder of this book describes the toolkit, its technical details, and how to use it.

Contributors

The main two contributors to code and data in this project are

• Benjamin J. Place (PI, Organic Chemical Metrology Group)

• Jared M. Ragland (co-PI, Chemical Informatics Group)

Additional members of NIST PFAS project team providing guidance, input, and testing for
this project include

• Jessica L. Reiner (co-PI, Biochemical and Exposure Science Group)

• Alix Rodawa (Biochemical and Exposure Science Group)

• Katherine Peter (Univ. of Washington)

• John Kucklick (Group Leader, Biochemical and Exposure Science Group)

• Catherine A. Rimmer (Group Leader, Organic Chemical Metrology Group)

• Vincent K. Shen (Group Leader, Chemical Informatics Group)

Contributing

Contributions to this project are encouraged! NIST engaged in this project to meet the goals
of a single research project. We have made this project available in the name of the public
interest and with hopes it will prove useful outside the immediate context. Issues with the
code are most effectively reported through GitHub. Pull requests are also encouraged.

https://www.go-fair.org/
https://serdp-estcp.org/
https://www.serdp-estcp.org/projects/details/a0bb4198-02cd-44b9-9e73-9ef916e7f7e0/er20-1056-project-overview
https://github.com/usnistgov/NISTPFAS/tree/main/methodreportingtool
https://www.nist.gov/programs-projects/measurement-science-and-polyfluoroalkyl-substances-pfas
https://www.nist.gov/people/benjamin-place
https://www.nist.gov/mml/csd/organic-chemical-metrology
https://www.nist.gov/people/jared-ragland
https://www.nist.gov/mml/csd/chemical-informatics-group
https://www.nist.gov/people/jessica-l-reiner
https://www.nist.gov/mml/csd/biochemical-and-exposure-science-group
https://www.nist.gov/people/alix-rodowa
https://www.nist.gov/mml/csd/biochemical-and-exposure-science-group
https://www.researchgate.net/profile/Katherine-Peter
https://www.nist.gov/people/john-kucklick
https://www.nist.gov/mml/csd/biochemical-and-exposure-science-group
https://www.nist.gov/people/catherine-rimmer
https://www.nist.gov/mml/csd/organic-chemical-metrology
https://www.nist.gov/people/vincent-k-shen
https://www.nist.gov/mml/csd/chemical-informatics-group
https://github.com/usnistgov/dimspec
https://orcid.org/0000-0003-0953-5215
https://orcid.org/0000-0002-8055-2432
https://orcid.org/0000-0002-1419-6062
https://orcid.org/0000-0002-2650-0981
https://orcid.org/0000-0001-7379-265X
https://orcid.org/0000-0003-0327-0519
https://orcid.org/0000-0001-6734-6629

About this Book

Chapters and sections in this book were originally drafted and approved as NIST Reports of
Analysis within the Chemical Sciences Division. This book serves as the official User Guide
for the DIMSpec project and will be expanded and updated appropriately on the project
website. Internal NIST Reports of Analysis describing each aspect of the project were
converted to R Markdown documents and stitched together using the bookdown package
(v0.29). The webbook version will be maintained as a living document on GitHub, as long as
the underlying project is active and as author time obligations allow. The version you are
reading now is a static one created from that webbook on 8 August, 2023. Function
references are included in the online version but removed here for simplicity. If a section is
insufficiently documented, let us know.

https://bookdown.org/yihui/bookdown/
mailto:pfas@nist.gov?subject=DIMSpec%20User%20Guide%20Feedback

Instructions

Installation

At the moment, this toolkit is only available outside of NIST through GitHub (the
preference, either by fork, clone, or download) or directly from one of this book’s authors.
For now, this toolkit includes the NIST PFAS Spectral Library. It is best used as an R project
which can be opened directly in the RStudio Integrated Development Environment (IDE)ii
which may be downloaded and installed free of charge if not already installed on a target
system. Initial set up does require an internet connection to download software installers
and dependencies; on a system which does not contain any software components this can
take a considerable amount of time.

System Requirements

DIMSpec has been tested on both Windows 10 and Ubuntu 20.0.4.3 LTS 64-bitiii platforms
and should run on any system able to install R, Python, SQLite3, and a web browser, though
installation details may vary for other operating systems. Follow the instructions for each
requirement on the target operating system.

[REQUIRED] R 4.1+ (download) and many packages are required (R Core Team (2021);
various); necessary packages will be installed when the compliance file is sourced, which
may take some time when the project is first installed. The RStudio IDE (download; RStudio
Team (2020)) is highly recommended for ease of use as this project is distributed as an R
project.

[STRONGLY RECOMMENDED] SQLite3 (download) and its command line interface (CLI;
download) provide the database engine in structured query language (SQL) and are not
technically required as the build can be accomplished purely through R, but are highly
recommended to streamline the process and manipulate the database. A lightweight
database interface such as DBeaver Lite is also suggested for interacting with the database
in a classical sense. Git (install instructions) is a repository manager which will make it
much easier to install and update the project. The sqlite3 CLI and git executables must be
available via PATH.

[RECOMMENDED] For chemical informatics support, both Python 3.9+ and the rdkit
(RDKit: Open-Soure Cheminformatics (version 2021.09.4)) library are required for certain
operations supporting display and calculations, primarily generation of machine-readable
identifiers (e.g. InChI, InChIKey, SMILES, etc) but the full capabilities of rdkit are available
(see the RDKit documentation for details); these are turned on by default but are
completely optional. An anaconda or miniconda installation is required. Python
integration is not required for spinning up the basic database infrastructure. Users may
need to add the conda executable to their PATH and, if conda is already installed, should
pay close attention to the Python section of Technical Details. If these are not available, R

https://www.rstudio.com/
https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/#download
https://www.sqlite.com/download.html
https://www.sqlite.org/cli.html
https://dbeaver.com/download/lite/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.rdkit.org/docs/index.html

will install miniconda (this requires user confirmation at the console) and create the
necessary environment as part of automated setup during the compliance script. (Another
option for chemical informatics is to use the Java-based R package rcdk instead; users will
need to install the Java framework prior to installing rcdk (see Windows; Ubuntu). This
package is not well supported in this project and rdkit is preferred.)

[OPTIONAL] It is helpful to have some data on hand to populate and evaluate the database.
Every effort has been made to simplify the process of building databases using this tool,
and data can be populated from CSV files of a defined structure; examples are provided but
the process of generating them can be somewhat onerous as key relationships must be
defined to automatically populate in this manner. Future work may be able to simplify this
process further, if necessary, but for now, interested researchers are encouraged to contact
the authors for guidance on how to transform data to fit this schema.

The following sections provide more detailed information on how to use the tools provided
to interact with the database and customize it for other uses.

Initial Setup

This section provides instructions in a “quick start” format. While every effort was made to
make this as painless as possible, success may vary from system to system. This assumes
that R v4.1 or later is installed. Several quick start guides offering more detail about aspects
of the project, including installation, are also available in the repository (listed in the
project README) and for download from the online User Guide by clicking the download
icon in the header at the top of the User Guide to select your download of choice.

• If using RStudio:
1. Open the project in RStudio.
2. Open the file at "R/compliance.R" in the editor.
3. Run the compliance script by clicking the “Source” button at the top right of

the editor pane or typing source("R/compliance.R") in the console pane.
• If not using RStudio:

1. Open an R session in the project directory or launch R and set your working
directory to that of the project (e.g. setwd(file.path("path", "to",
"dimspec_dir")).

2. Execute the command source("R/compliance.R").

Using either method should in most cases establish the compute environment, activate
logging and argument validation, bind to a python environment providing rdkit support,
launch an API server, and list out the web applications available. The project is distributed
with a database populated with high resolution mass spectrometry data for per- and
polyfluoroalkyl substances (PFAS) for evaluation purposes both to distribute this data set
and to evaluate capabilities for reuse in other projects.

https://cimentadaj.github.io/blog/2018-05-25-installing-rjava-on-windows-10/installing-rjava-on-windows-10/
https://www.r-bloggers.com/2018/02/installing-rjava-on-ubuntu/
https://pages.nist.gov/dimspec/docs/quick_install.pdf
https://github.com/usnistgov/dimspec
https://pages.nist.gov/dimspec/docs

Project Directory

The project directory contains the following directories of interest. Generally, the only
modifications (if any) that should be necessary to operate DIMSpec projects are to
environment establishment files located in the /config directory or in the /inst directory
if extending the DIMSpec API or web applications.

• /config Files pertaining to the build, description, and population of the underlying
database, as well as certain compute environment settings and import settings. This
serves for rapid rebuilding and reuse of the underlying database structure. Also
included are environment establishment files for the project (“env_glob.txt”), the R
session (“env_R.R”) and the optional logging (“env_logger.R”) functionality.

– /sql_nodes Files containing the sql scripts defining the database schema, as
run by the “build.sql” script. Files are separated into database “nodes” with
the hope that many can be repurposed or used a la carte in future projects. A
graphical representation of the database schema, the entity-relationship
diagram (ERD) is also available.

– /data Comma-separated-value (CSV) files which can be used to populate
tables defined by their SQL nodes and which will be populated according to
the chosen population script. This directory contains common data which
should be applicable to all database produced by this tool (i.e. normalization
tables, elements and isotopes, etc.) and subdirectories containing project-
specific CSV files.

• /example Files providing examples of (mainly) import files in JavaScript Object
Notation (JSON) format. These are the files used to populate empirical data and
were produced by the NIST Non-Targeted Analysis Method Reporting Tool.

• /images If images of molecular models are produced using rdkit through this
toolset, they will be housed here, named by the molecule’s known structure
identifier (e.g. SMILES, InChI, etc.). Other images may be produced during routine
work and should also be placed in this directory, though user-produced images and
graphics can be saved anywhere.

• /inst Files for rdkit integration (/rdkit), the API service (/plumber), and Shiny
applications (/apps).

– /rdkit Environment establishment and rdkit functions are located here.
These will determine how R connects to the python environment to integrate
rdkit into an R session as well as the files necessary to build the environment
(e.g. “environment.yml”). Functions in the “py_setup.R” file should suffice for
most use cases.

– /plumber Environment establishment and API definition functions are
located here. These will determine how requests to the API are routed and
functionality are provided through http protocols in a RESTful manner. It

https://github.com/usnistgov/NISTPFAS/tree/main/methodreportingtool

comes complete with Swagger documentation available when the server is
running.

– /apps Environment establishment, general resources, and shiny application
files are located here. Each application is contained within its own directory.

• /logs If logging functionality is turned on, logs will be written here according to the
namespace of the log (e.g. logs written to the “db” namespace will be written to
“/logs/log_db.txt”).

• /R directory; most general R functions are housed here or in one of the
subdirectories.

Project Set Up

Running the compliance script at "/R/compliance.R" will establish the project for you in
most cases. It leverages several files to determine project settings; these are detailed here
for clarity and customization options, with further details provided in the Compute
Environments section. To accept the default settings, source the compliance file and move
on to the Using DIMSpec section. This may take a while to resolve package dependencies.
To customize your implementation, read on. Changing any of these settings is entirely
optional.

Step 1 - Customize global environment settings

Several options are available to customize the use of DIMSpec to any given project
component; settings are in the file “/config/env_glob.txt”. These values are not set at
the system level to add flexibility across operating systems; they are instead session values
that are available while a session is active.

Table 1: Customizing global settings in the “/config/env_glob.txt” file

Setting Type Description
DB_TITLE String The title to use for this implementation.
DB_NAME String The name of the database to create or use. For SQLite this

should be the name of the database file.
EXPLICIT_PATHS Logical Whether or not file names are fully qualified with their path.
DB_BUILD_FILE String The .sql file name of the script used to build the database

(e.g. “build.sql”; see Database Schema.
DB_BUILD_FULL String The .sql file name of the fallback build script that should be

used if the sqlite3 command line interface (CLI) tool is not
available (e.g. “build_full.sql”; see Database Schema).

DB_DATA String The .sql file name of the data population script to run when

populating data at build time (e.g. “populate_common.sql”;
see Populating Data.

SQLITE_CLI String The name of the terminal command to launch the sqlite shell
(e.g. sqlite3). This must be available in your PATH.

CONDA_CLI String The name of the terminal command to execute ana-
/miniconda commands (e.g. conda). This must be available
in your PATH.

INIT_CONNECT Logical Whether or not to connect to the database when starting a
session by sourcing the compliance script.

LOGGING_ON Logical Whether or not to establish an environment to perform
action logging, which will carry additional information
about what functions in the DIMSpec toolkit are doing (see
Logger).

USE_API Logical Whether or not to activate the plumber application
programming interface (API) for this session (see Plumber).
If this is set to TRUE, the plumber service will launch in a
background process by default and return control to the
console.

API_LOCALHOST Logical Whether or not to activate the plumber application
programming interface (API) hosted on the local machine
only. If this is set to FALSE, the API will be hosted and
available on your network.

API_HOST String If API_LOCALHOST is set to FALSE, set this to the IP address or
network path to the computer hosting the API.

API_PORT Integer The hosting port on which to launch the plumber service.
This must be an open port or the launch will fail. If
API_LOCALHOST is TRUE, the API will launch at
"localhost:API_PORT", otherwise at "API_HOST:API_PORT".

INFORMATICS Logical Whether or not to establish an environment providing
informatics support, primarily with RDKit. To streamline
installation of only the database and R tools, set this to
FALSE.

USE_RDKIT Logical Whether or not to use RDKit for informatics (requires
python). If set to FALSE, the packages BiocManager,
ChemmineR, and rcdk will be installed if not available, though
support for these is not provided at this time.

USE_SHINY Logical Whether or not to establish an environment providing
support for web applications provided as part of the project
(defaults to TRUE).

SHINY_BG Logical [PLANNED FEATURE] Whether or not to launch shiny apps
as part of a background process, making them immediately
available from a web browser when the compliance script is

executed (defaults to FALSE).

Step 2 - Customize R session settings in the “env_R.R” file

More customization options that require R are available to set up the project specifically for
your application. Open the file “config/env_R.R” to customize these for your use. These
values are not set at the system level to add flexibility across systems; they are instead
session values that are available during use of the project, and many depend on settings
from the section above, which will be applied automatically if they are not already set.

Table 2: Customizing settings specific to the R environment

Setting Type Description
DB_DATE Date The date the database file was last created, as

determined by file properties. Override with a date
value (e.g. as.Date("2022-06-01"))

DB_RELEASE String The major and minor release versions for this
database.

DB_VERSION Generated
String

Combines the DB_RELEASE and DB_DATE (if built)
values for a complete version of the database.

DB_PACKAGE String The name of the R package allowing connection to
your database (e.g. RSQLite in most cases, but could
be any database connection package).

DB_DRIVER String The name of the database driver function allowing
connection to your database, which must be a
function available in DB_PACKAGE (e.g. SQLite).

DB_CLASS String The class of an R object resulting from a call to the
function defined by DB_PACKAGE::DB_DRIVER
(e.g. SQLite); this will be used to search for and
manage connections in the session.

DB_CONN_NAME String The name to be used for the R object database
connection (e.g. con in most cases here); this
defaults to a session variable named DB_CONN_NAME if
it exists to facilitate independent management of
multiple connections.

DEPENDS_ON String
Vector

The list of packages required by your project. The
list provided is the bare minimum required for
functionality in the project as distributed. Add more
to expand functionality for your use cases if
necessary.

EXCLUSIONS String
Vector

The list of files and directories to exclude from
automatic loading when the compliance script is

run.
IMPORT_MAP String Imports the mapping file determining relationships

between import files and the database structure (see
Importing Data); change the name of the CSV file
(change also the function calling it if using formats
other than CSV) to point to a different map.

LOGGING_ON Logical Whether to activate logging functionality when a
session begins. This defaults to the session variable
named LOGGING_ON and, if not present, to TRUE. If
TRUE, adds the logger package to the dependency
list.

VERIFY_ARGUMENTS Logical Whether or not to activate function argument
verification for this project. The default of TRUE will
check arguments provided to many functions for
compliance with function expectations and is good
for development work, but also slows down
execution times. Set to FALSE to turn this off.

MINIMIZE Logical If TRUE, turns off both LOGGING_ON and
VERIFY_ARGUMENTS to speed up execution time.

USE_API Logical Defaults to the global setting of USE_API. If TRUE,
several options are provided to customize
properties of the API. Set these as appropriate for
advanced use cases; the defaults will make the API
available on your local system, e.g. at
http://127.0.0.1:8080.

USE_SHINY Logical Defaults to the global setting of USE_SHINY. If TRUE, a
list of installed shiny applications will be available to
your session under the named character variable
SHINY_APPS which contains absolute paths to the
application directories. These are launchable (and
should resolve their environment) at any time
during a session from the console using
shiny::runApp(SHINY_APPS["app_name"]) where
"app_name" is the name of a shiny app in the
variable. See the Mass Spectral Match for Non-
Targeted Analysis (MSMatch) application that ships
with this project as an example to match user
supplied mass spectral data against the library.

Step 3 - Customize logger settings in the “env_logger.R” file

To provide support information about performance and support troubleshooting, a logging
utility is provided with the project. Logs are managed by namespace and generated with

the function log_it which uses the logger package for additional functionality (see
Logger). Customization options for the format of these logging messages are provided,
though under most circumstances should be left as-is to support reading logs back into a
session. These values are not set at the system level to add flexibility across systems; they
are instead session values that are available during use of the project, and many depend on
settings from the sections above, which will be applied automatically if they are not already
set.

Three support functions are also provided in this file to update the logger settings during a
session (update_logger_settings), read logs from a file back into the session (read_log),
and convert a log file into a session data frame for deeper inspection (log_as_dataframe).

Environment set up files that follow the same approach are also provided for rdkit
integration, the plumber API server, and shiny web applications; these are not detailed
here and should only be changed when necessary. See those sections in Technical Details
for more information.

Table 3: Customizing logger settings; generally, these should not be changed, but
LOGGING is easily extended for developing different applications of DIMSpec.

Setting Type Description
LOG_DIRECTORY String

Path
The relative path to the project directory housing logs.
This defaults to the session variable named
LOG_DIRECTORY and, if not present, to "logs". If that
directory is not present, it will be created.

layout_console Function
String

The format to use when printing logs to the console, by
default using the logger::layout_glue_generator, but
could be any logger generator.

layout_file Function
String

The format to use when printing logs to a file, by default
interpreted by logger::layout_glue_generator, but
could be any logger generator.

log_remove_color Regex
String

A regular expression describing color formatting to strip
out when reading logs back into a data frame. If printing
to the console in RStudio, colors will be maintained. This
should coordinate with the layout_console format.

log_split_column Regex
String

A regular expression describing character formatting
used to split log records into columns when reading logs
back in as a data frame object with the function
log_as_dataframe. This should always be coordinated
with the layout_file format.

LOGGING List A nested list object defining logging settings for different
namespaces. Each must include the following named
settings:

• log determines whether to log a given namespace
(TRUE/FALSE);

• ns is the character scalar namespace called as
part of log_it;

• to is the destination of the log message, one of
"file", "console", or "both";

• file is the file path to the log file which will be
created if it does not exist;

• threshold determines what level at which to log
messages (e.g. setting a threshold of "info" will
not log messages at the "trace" level; see the
logger package documentation for details).

New namespaces can be added during the session if
desired, but this list should define the most common
ones. More information about the logging environment
is provided in the Logger section of Technical Details.

LOGGING_WARNS Logical Whether to log all warning messages generated during
this session by default.

LOGGING_ERRORS Logical Whether to log all error messages generated during this
session by default.

Using DIMSpec

There are several R packages required for this project, so initial set up may take some time.
To streamline this process once set up is complete, a compliance script is available that will
install and load required packages; run source("R/compliance.R") in the console to
establish the runtime environment. See References for the complete list of library
dependencies. Based on project settings, components can be turned on or off as desired for
lighter weight applications. In many cases helper functions are available to turn these
components back on during an active session without interrupting the current
environment. The following sections assume the compliance script has run and that all
functions are available. At any time, use fn_guide() or fn_help("fn") where "fn" is the
name of a function (quoted or unquoted) to view function documentation from within R.

Database Connections

Connecting to an Existing Database

This project uses SQLite by default as a portable database engine where the database is
contained to a single file. To connect a project to a particular database (e.g. you have
multiple databases for different projects), simply change the value of DB_NAME in
“env_glob.txt” prior to sourcing the compliance file. The database distributed with the
project contains mass spectral data for per- and polyfluoroalkyl substances as an example.
It (and any databases created using this project), opens in write-ahead logging (WAL)

https://daroczig.github.io/logger/articles/Intro.html
https://www.sqlite.org/wal.html

mode for speed and concurrency. This does generally require the database file to be
present on the same machine as the project but allows installation on instrument
controllers that may not comply with network security restrictions. As with all SQLite
databases, foreign key enforcement must be turned on when connecting with pragma
foreign_keys = on; the manage_connection function takes care of this and other
connection management aspects automatically and is the recommended way to connect
and disconnect to DIMSpec databases. Call manage_connection(reconnect = FALSE) to
close the connection. Calling manage_connection calls DBI::dbConnect and
DBI::dbDisconnect with certain checks and parameter defined side effects to manage the
connection.

Creating a New Database

Tooling to create a new SQLite database using this schema is built into the project;
functions are in the “R/db_comm.R” file and help documentation is available from within
the project using the fn_guide() and fn_help functions. When creating a new database,
prior to sourcing the compliance file, set options in the “env_glob.txt” and “env_r.R” files
appropriately. If the file identified by DB_NAME does not exist it will be created according to
the SQL scripts selected as DB_BUILD_FILE and DB_DATA; edit those files if necessary for
your use case. To build a new, empty database users need only set DB_NAME to a file that
does not exist in the project directory, and DB_DATA to “populate_common.sql” which
contains the majority of source data necessary to populate normalization tables (see the
Database Schema and Populating Data sections for more detail).

Alternatively, once the compliance file has been sourced, a new database may be created
directly from R with the build_db function; this function takes as default values those
provided in the environment, but you can at any time define different specifications. For
example, to create a new database with a different SQL definition and population script
use:

 build_db(
 db = “new_database.sqlite”,
 build_from = “this_file.sql”,
 populate = TRUE,
 populate_with = “new_data.sql”,
 connect = FALSE
)

If a connection already exists that you wish to maintain in the session, be sure to call this
with connect = FALSE in order to not drop the connection (see next section for managing
multiple connections). If you do not wish to maintain a connection to the previous
database, this can be safely called with connect = TRUE (the default) and the prior
connection will be replaced with the new one.

Connecting to Multiple Databases

If your project needs to connect to multiple databases, separate connections can be made
and managed within a single R session. For convenience, the supplied manage_connection
function will apply to the database and connection object defined in the setup files (see
Project Set Up). Enable new connections alongside existing connections (e.g. the one
created in the previous section) with manage_connection(db = “new_database.sqlite”,
conn_name = “con2”) where db points to the new database file and conn_name does not
exist in the current environment. There is no limit to the number of connections that can be
made in this manner, and the WAL will be flushed each time this function is called if no
other connections exist.

Using a Database Connection in an R Session

If INIT_CONNECT = TRUE, sourcing the compliance file will establish a connection to the
database named in DB_NAME and make the connection available as an R session object with
the name defined by DB_CONN_NAME (the default is con). Several convenience functions are
available with those options set.

Functions from the dplyr package support database operations as implemented in the
dbplyr package, meaning you can work with database objects using the “tidyverse” as if
they were local objects (e.g. tbl(src = con, “contributors”) where con is your database
connection object and “contributors” is the name of a database table or view). Simple
database operations (e.g. filters, joins, column selection, etc) are supported and the
resulting object is an external pointer to a lazy database query; to pull data as a data frame
(e.g. necessary to join a local data frame with a database query result) use collect() on
the tbl object. There are, however, some tasks (e.g. complicated or programmatic queries)
where that may prove insufficient. In that case, two options are available.

The connection object fully supports direct communication for SQL queries through the DBI
package and is likely a familiar option for users comfortable with SQL. To continue the
example, dbGetQuery(con, “select * from contributors”) will return the same data as
in the tbl example above, except that it returns a data frame rather than a pointer object.

For users less familiar with SQL, the function build_db_action is provided to support
nearly all database operations. There may be edge cases where it fails. Results from the
following function are equivalent to the dbGetQuery result but will construct the query
programmatically, allowing for the passing of arguments and always returning a data
frame:

 build_db_action(
 action = “select”,
 table_name = “contributors”
)

As this function performs argument verification and SQL interpolation to protect queries
from unintended side effects, this is the recommended manner to directly interact with the

https://dplyr.tidyverse.org/
https://dbplyr.tidyverse.org/
https://dbi.r-dbi.org/

database for anything other than basic queries. It supports typical database actions
(including SELECT, INSERT, UPDATE, and DELETE, as well as a custom GET_ID action that
returns an integer vector of the id column for all records matching the query) and
operations (GROUP BY, ORDER BY, DISTINCT, LIMIT). Search and filter options can be passed
programmatically to match_criteria as a list and are parsed by the clause_where
function.

Queries do not have to be executed; set the argument execute = FALSE to examine queries
prior to execution or save common queries for reuse. See the full function reference with
for advanced use of the build_db_action and clause_where functions with fn_help.

Inspecting Database Properties

Code decoration conventions used in the SQL files enable reading table definitions and
properties from SQLite into R with the function pragma_table_info. Supply the name of a
database table or view to get information about that table; different connections can also
be used for comparison if desired. This is the interactive version; a version in JSON format
can be saved using save_data_dictionary. This saved file is loaded during the compliance
script as object db_dict which is a named list of data frames; names correspond to
database entities. This can be regenerated and brought back into the R session at any time
(see data_dictionary) and should be updated if modifications are made to the underlying
schema.

Figure 1a. An example of the data dictionary object.

Figure 1b. Details of the “samples” table from the data dictionary.

Relationships between database entities can also be queried programmatically. Use the
er_map function to read the same decoration convention in the SQL definitions to extract
relationships. An object is created during the compliance script as db_map to make it
available to your session. This results in a nested list with names corresponding to
database entities, and elements describing the object name, its type, which table(s) and
column(s) it references, which table(s) reference it, which table(s) it normalizes, and which
view(s) use it.

Figure 2a. An example of the R object structure of an entity map as a list.

Figure 2b. Details of the “samples” table from the data entity map object in Figure 2a.

Using the Application Programming Interface (API)

Application Programming Interfaces (APIs) enable software components to communicate
with each other. Most modern machine communication happens through APIs. In the
context of this project, an API server is launched using the plumber package to reduce
computational load on R sessions or shiny applications and ensure consistent results
across multiple sessions. It does not have to be used (set USE_API = FALSE in “env_glob.txt”
to turn it off) but is encouraged and is a requirement for all shiny applications that ship
with this project.

The compliance script launches this in a background process by default at
http://localhost:8080. Use api_open_doc to open the documentation page directly in a
browser. To start the service manually from an interactive session and load the
documentation immediately for exploration and testing, use api_reload(background =
FALSE); if it is already running in a background process and desirable to launch a second
service (e.g. for testing new endpoints or changes to existing ones), set the pr parameter to
a different name and the on_port parameter to an open port (it will fail if the port is
already in use). Documentation is produced by Swagger and is interactive, allowing for
users to enter values and get both the return and the URL necessary to execute that
endpoint (Figure 3). See the Plumber section in Technical Details for more information. If
the compliance script is run with USE_API = FALSE and api_reload is not available, it may
be more intuitive to use start_api.

Endpoints for many predictable read and search interactions are available. Session
variables define the connections, and communication and control functions default to those
expected values for streamlining (e.g. functions like api_reload, api_open_doc, and
api_endpoint may be called without referring explicitly to a session object or URL for the
current project).

The main interactivity with the API from an R session or shiny application is through the
api_endpoint function. The first argument (i.e. path) should always be the endpoint being
requested. Additional named parameters are then passed to the API server; the same
example endpoint result in Figure 3 called from the console would be

 api_endpoint(
 path = “compound_data”,
 compound_id = 2627,
 return_format = “data.frame”
)

with an example of the results in Figure 4. Endpoints of most use to those using the service
will vary according to needs and are detailed in the Plumber section in Technical Details.
Call them with api_endpoint(path = *X*) and any other arguments required by the
endpoint. Paths listed here are likely of most use:

• “_ping”, “db_active”, and “rdkit_active” indicate that the server is alive and able
communicate with the database and rdkit, respectively;

https://www.rplumber.io/
http://127.0.0.1:8080/
https://swagger.io/

• “list_tables” and “list_views” return available tables and views respectively;
• “compound_data” and “peak_data” return mass spectrometry data associated with

a compound or peak and must be called with compound_id or peak_id equal to the
database index of the request; in most cases these should be called with
return_format = "data.frame";

• “table_search” is a generic database query endpoint analog for build_db_action to
construct SELECT queries and has the most parameters for flexibility; for more
information see fn_help(build_db_action) for details; relevant parameters are
summarized here:

– table_name should be the name of a single table or view;

– column_names determine which columns are returned;

– match_criteria should be a list of criteria for the search convertible between
R lists and JSON as necessary; values should generally follow the convention
list(column_name = value) and can be nested for further refinement using
e.g. list(column_name = list(value = search_value, exclude = TRUE))
for an exclusion search (see fn_help(clause_where) for additional details);
when called via api_endpoint R objects can be passed programmatically;

– and_or should be either "AND" or "OR" and determines whether multiple
elements of match_criteria should be combined in an AND or OR context
(e.g. whether list(column1 = 1, column2 = 2) should match both or
either condition);

– limit is exactly as in the SQL context; leave as NULL to return all results or
provide a value coercible to an integer to give only that many results;

– distinct is exactly as in the SQL context and should be either TRUE or FALSE;

– get_all_columns should be either TRUE or FALSE and will ensure the return of
all columns by overriding the column_names parameter;

– execute should be either TRUE or FALSE and determines whether the
constructed call results are returned (TRUE) or just the URL (FALSE); and

– single_column_as_vector should be either TRUE or FALSE and, if TRUE, returns
an unnamed vector of results if only a single column is returned.

These and other endpoints can be easily defined, expanded, or refined as needed to meet
project requirements. Use api_reload to refresh the server when definitions change, or
test interactively prior to deployment using Swagger by launching a separate server either
by opening the plumber file and clicking the “Run API” button in RStudio, or using the
api_start or api_reload functions as described above. To support eventual network
deployment, any number of API servers may be launched manually on predefined ports to
allow for load balancing.

Figure 3. Screen shot and descriptions of the interactive Swagger documentation page for the
endpoint /compound_data, available using api_open_doc(). Click the “Try It Out” button to

activate the testing mode.

Figure 4. Screen shot of the result of calling the same API endpoint as in Figure 3 from an R
session.

Using rdkit

For chemometrics integration, rdkit is made available as part of the project. This user
guide does not provide details about rdkit; users are instead directed to the
documentation for details. All functionality provided as part of rdkit is supported with
some limitations through the reticulate package. In most cases the required environment
should resolve during the compliance script. On certain systems it may be desirable to
install the environment manually (instructions in the Python section of Technical Details).

Once an R session has activated and bound to a python environment it cannot be
deactivated, but instead must be terminated to drop this binding. Once bound to a session
object, all rdkit functions are accessible as a list of functions (just as in any python
integration using reticulate) following rdkit module structures e.g.

rdk$Chem$MolFromSmiles("CN1C=NC2=C1C(=O)N(C(=O)N2C)C")

Though these can be chained together or piped, for stability it is recommended to store the
return of each call as a variable; returned objects may not always be readily used in further
functions.

A few custom R functions are made available to assist with the process. The
implementation will depend on the environment definition found in “inst/rdkit/env_py.R”
but in the standard use case will result in a session object named rdk tied to a python
environment named “nist_hrms_db” using packages built from conda forge. See the
function reference guide using fn_guide() for additional details, but the following
functions are likely the most useful:

• setup_rdkit is a convenience function that should install and bind to python in a
session;

• rdkit_active is the main check to determine whether or not rdkit has been bound
to the current session and allows for setting multiple bindings if desired by setting
rdkit_ref to a different value, and will trigger setup_rdkit if called with
make_if_not = TRUE;

• molecule_picture creates a graphic of a molecular model from structural notation
and is an example of rdkit functionality; and

• rdkit_mol_aliases generates machine-readable structural notation in a variety of
formats (e.g. InChI and InChIKey) given a notation with a known format and can
interchange between these to create molecular aliases; all formats supported by
rdkit are attempted if get_aliases = NULL (Figure 5) but generally these would be
specific by project needs; results that fail or are blank are removed and the return is
by default a data frame to support any number of identifiers with one pass.

https://www.rdkit.org/docs/index.html
https://rstudio.github.io/reticulate

Figure 5. All molecular aliases as seen in the RStudio viewer for results of a call to
rdkit_mol_aliases("CN1C=NC2=C1C(=O)N(C(=O)N2C)C", get_aliases = NULL)

Logging

Logging messages for statuses, information, warnings and errors are provided throughout
functions used in this project and is executed through the log_it function. This function
builds on top of the logger package to construct, decorate, and write to file any logging
messages necessary, and offers console messages in case logger is unavailable. If logging is
enabled and the logger package available, logs may also be written to files in the “logs”
directory and later retrieved with the utility functions read_log and log_as_dataframe,
whose first parameter is the name of the file to read from the /logs directory. Logs written
to disk by default are separated by namespace (e.g. /logs/log_db.txt vs
/logs/log_api.txt) to facilitate support, but output files may be defined as any available
.txt file path and will be appended to existing files. Logs may look odd if viewed directly as
they include text decorations to display in the console.

Settings are available for five namespaces by default (see Logger and Project Set Up for
more details) as established by the “config/env_logger.R” file; more can be enabled at any
time using the add_unknown_ns and clone_settings_from parameters of log_it. Logs can
then be generated from within any function using e.g.:

 log_it(
 log_level = “info”,
 msg = “Log message text”,
 log_ns = “global”
)

https://daroczig.github.io/logger/articles/r_packages.html

where log_level is the category of message, msg is the message itself, and log_ns is the
namespace. Settings defined in the LOGGING session variable determine how logs are
processed. Each message produced with log_it includes the timestamp, namespace, status
(i.e. log_level), function calling the message, and the message itself. While log_it will
print to the console messages of any level, log_level should be one of the supported
logging levels (trace, debug, info, success, warn, error, or fatal) to integrate with logger,
which is required if the logging message is to be written to a log file.

Users developing on top of this infrastructure are encouraged to take advantage of the
logging functionality and make liberal use of the log_it function to ease debugging and
maintenance.

Figure 6. Example uses of log_it to create logging messages.

Using Shiny Applications

The Shiny package enables web applications written using R, which often meaningfully
make custom processing code like that written for this project available to broader
audiences. Additionally, inputs can easily be type verified and restricted to preset
expectations. When the compliance script is run, a named vector of available shiny apps
will be available as SHINY_APPS. These can be started with the start_app(app_name = X)
where X is the name of the application as found in names(SHINY_APPS). Shiny apps are fluid
and responsive; will automatically arrange themselves to best fit your browser size and can
be custom designed with any layout or functionality. By default all communication with the
database is routed through the plumber API.

https://shiny.rstudio.com/

This allows environment resolution to launch applications directly from the console,
without any need to run the compliance script. Launching an app is then possible directly
from the console (or batch file shortcuts which could be included in later updates) using
e.g.

 shiny::runApp(“inst/apps/table_explorer”)

from the project directory.

Three shiny applications ship with this project as of the time this document was written.

• table_explorer allows users to explore database tables and views by selecting it
from a drop-down list and details definitions and connections to other tables and
views; this app should be amenable to any database created with DIMSpec and is
detailed in its own section;

• msmatch allows users to upload an mzML file of mass spectral data and search user-
defined features of interest by mass to charge ratio and chromatographic retention
time for matches in the database for both known compounds and annotated
fragments, while providing contextual information about the method and samples
used to generate reference spectra. The MSMatch application is detailed in its own
section.

• dimspec-qc allows users to perform the quality control evaluation of potential
imported data and generates the necessary JSON object to be incorporated into the
database. The MSQC application is detailed in its own section.

An application template is also included which should accelerate development of additional
applications on top of the DIMSpec infrastructure to facilitate project needs.

Importing Data

For now, data imports are only supported from the command line using outputs generated
by the NIST Non-Targeted Analysis Method Reporting Tool (NTA MRT). That tool is a
macro-enabled Microsoft Excel® workbook available on GitHub that

“…allows for the controlled ontology of method data reporting and the export of
the data into a single concise, human-readable file, written in a standard
JavaScript Object Notation (JSON).”

Users fill out the workbook annotating features of interest and associated fragmentation
identities. Generated method files are submitted alongside the mzML file (converted from
instrumentation output using Proteowizard’s msConvert software (Adusumilli, Ravali and
Mallick, Parag 2017). After quality control checks are performed, the resulting JSON object
holds everything necessary to import data into the database.

Data passing quality control checks (see the DIMSpec Quality Control section for a shiny
application to check quality control aspects of mzML files) are imported using functions

https://github.com/usnistgov/NISTPFAS/tree/main/methodreportingtool
https://proteowizard.sourceforge.io/

found primarily in the “/R/NIST_import_routines.R” file. Field mapping is defined by the
“/config/map_NTA_MRT.csv” file, which contains a list of import file elements and their
properties, with connections for each to their destination tables and columns; individual
elements are resolved by the map_import function which does much of the transformation.
New maps can be created and used in support of other import formats in the future, and as
the import functions are heavily parameterized they may need to be customized.

The order of operations is controlled largely by the pipeline function full_import which is
the typical use case method for importing data. That function will check that the import
file(s) include requirements and recommendations as defined in the file at
“/config/NIST_import_requirements.json” which is a JSON list of expected elements and
headers within each element and whether the elements are required. When using the NTA
MRT format and process to import data the default arguments to this function and the
import map should not be changed, but flexibility is supported by full_import having a
nearly exhaustive list of parameters passed to underlying functions to resolve each
database node in the required order (contributors, methods, descriptions, samples,
chromatography, quality control, peaks, compounds, and fragments; see SQL Nodes in
Technical Details for more details about schema nodes); parameters are passed largely by
name matches for underlying functions using do.call. The import process is only available
from the console, provides logging (if enabled) throughout, and fully supports batch
imports from a list of import files read in via jsonlite::fromJSON(readr::read_file(X))
where X is a vector of file paths. Files may alternatively be imported one at a time directly
from JSON files using the file_name parameter and leaving the import_object parameter
as NULL. A live connection to the database is required, and when additional information is
needed (e.g. to resolve or add unknown controlled table entries), users will be prompted at
the command line during the process.

Alternatively, data can be imported when a database is built or rebuilt from comma-
separated value (CSV) files. This process is not likely amenable to many projects as it
requires data indices be prepopulated and accurately cross-linked across CSV files, with
one CVS file for each database table being populated; this should be considered if data are
already in a database-like format and can be easily cross-linked, in which case only the
table and column mappings need be solved. Several such files are used to populate a “clean”
database install with certain controlled vocabulary and reference tables (see files
“/config/populate_common.sql” and the “/config/data/” directory). Contact these
authors for assistance with using the NTA MRT and msconvert process, or conversion of
data into the DIMSpec schema if you feel a project’s data would be amenable to the
database structure described in this document.

Ending Your Session

Unclosed database connections can have unintended consequences. Generally, connections
to the database during a session should be managed with manage_connection which allows
for both disconnect and reconnect (to flush the WAL and establish a new connection). The
API server will need to be spun down separately using stop_api. Alternatively, and to

preserve any data frame objects that may have been created as external pointers (i.e. as
dplyr tbls), when users finish with their connection needs they may use the convenience
function close_up_shop. Connections may not flush completely in all cases. If users notice
the -shm and -wal files are still open in the directory, the best way to flush them is to
establish a new connection and then disconnect from it, using either manage_connection or
DBI::dbConnect/DBI::dbDisconnect.

Updating the Schema

At the time this book was written, the schema should be well defined for most use cases.
Extensions can however be added at any time to suit project-specific needs. To avoid data
loss, it is recommended that any table extensions be performed directly in SQL and those
commands saved to an SQL script. Views can be added freely as required. If users of this
database framework apply any schema extensions, the authors would be interested in
learning about both the need and the implementation so it may be evaluated for inclusion
in future versions.

This concludes the User Guide for the Database Infrastructure for Mass Spectrometry. The
following section contains technical details about the implementation and user
customization.

Technical Details
This section contains additional technical details that may be of interest to advanced users,
and for future reference as DIMSpec schema and tools mature.

Database Schema

The schema for the underlying database is defined by a series of SQL scripts in the config
directory. Data are structured in a series of “nodes” and are detailed in this section. If the
sqlite3 CLI is available, these are created by a script using a series of .read commands, one
for each node defined. See the file at "/config/build.sql for the standard implementation.

Schema files are used from within R as part of the database build routine (see build_db)
using the shell (on Windows) or system (on Unix-likes) functions. If the sqlite3 CLI is not
available, a fully qualified native SQL script (such as the one provided at
/config/build_full.sql) can be generated by create_fallback_build to build and
populate in one step by parsing CLI commands in the SQL scripts to build underlying
statements directly; this is less customizable and will take considerably longer but serves
as a bridge for when CLI tools are not installed.

SQL Nodes

Each node file defines the tables and views necessary to store and serve data for a set of
conceptually related entities in the database. Code decorations are used to facilitate
translatability to R. Entity definitions (e.g. CREATE TABLE commands) are separated by the
defined text string /*magicsplit*/, which is used as string split points by database
communication functions to return information about the database. Headers are defined as
a long /*=== ... ===*/ SQL comment with equal signs delineating beginning and ending.
Table and column comments are defined as /* ... */ SQL comments; one must be present
for each entity (i.e. one for the table or view, and one for each column in that table or view).
Comments are ignored by SQL and can be used to parse table definitions and return
information to an R session. This is what allows R to parse the SQL files for Inspecting
Database Properties by reading a table definition (see next page) to obtain entity
properties Figure 7a, pull column comments directly from the definition Figure 7b, inspect
mapping between entities (Figure 7c; here db_map is an object created by er_map), or pull
information together into a formalized data dictionary (Figure 7d; here db_dict is read
from a JSON object created by save_data_dictionary) and available for all database tables
and views.

This allows for programmatic accessibility, as R sessions can now understand the linkages
between tables easily. One implementation example is checking for, resolving, and
automatically adding new normalization values with resolve_normalization_value for

import resolutions, but could be as simple as understanding that fragment_id here
references the norm_fragments table Figure 7e. In addition, once relationships are in a
structured format, applications like the Table Explorer can be built to display to users in a
more natural manner the structure of the underlying data tables Figure 8.

The decorated table entity command:
 /*magicsplit*/
 CREATE TABLE IF NOT EXISTS annotated_fragments
 /* Potential annotated fragment ions that are attributed to one or more mass spectra. */
 (
 id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
 /* primary key */
 mz REAL NOT NULL,
 /* m/z value for specific fragment, derived */
 fragment_id INTEGER NOT NULL,
 /* foreign key to fragments table */
 /* Check constraints */
 /* Foreign key relationships */
 FOREIGN KEY (fragment_id) REFERENCES
 norm_fragments(id) ON UPDATE CASCADE ON DELETE CASCADE
);

can then be parsed to create session-available expressions of entities and relationships.

Figure 7a. An example of using pragma_table_info to explore table definitions.

Figure 7b. Comments can be easily added to the definition.

Figure 7c. Entity mapping can also be parsed directly from the SQL decoration convention.

Figure 7d. Entity mapping can be saved to disk and recalled conveniently using the SQL
decoration convention.

Figure 7e. Entity relationships can also be parsed to programmatically return foreign key
relationships.

Figure 8. Decorated SQL definitions provide R with metadata regarding the database. The
“Table Explorer” shiny application allows visual exploration of both data and context for any

given database entity. With the project active and the compliance file sourced, launch this
application in your browser from the console with

shiny::runApp(SHINY_APPS['table_explorer']).

The following subsections contain summary information about each of the database nodes,
its purpose, and the tables and views held within. Some of this information is subject to
change as the database schema is refined and maintained. See the full database schema
definition as a JSON object in the project directory as a file ending in
"_data_dictionary.json”. Entities found in each node and snapshots of their structure
from the complete entity relationship diagram (ERD) are provided here; generally, node
tables are in a color, automatic views are in grey, and functional views are in white.

Some views are automatically generated (see the flag “[autogenerated by
sqlite_auto_view()]” in the description) to display human-meaningful values instead of
the index linkages for normalized columns, e.g. the ms_methods table can then be viewed in
a “denormalized” way using the view_ms_methods view to get display values for normalized
fields Figure 9.

Figure 9a. Screenshot of the first four rows of the normalized database table ‘ms_methods’.

Figure 9b. Screenshot of the first four rows of the denormalized database table ‘ms_methods’.

The Analyte Node

This node contains information relevant to analytical targets. This node does not contain
analytical data, but rather identifying information and views to compare that identifying
information with measurements held in the “data” node and is also linked to the
“contributors” node. It contains two sub-nodes. One describes compounds and one
describes fragments. These are linked through the “compound_fragments” table (which
includes a link outside this node to the “peaks” table of the data node to allow for existence
in either and flexible bidirectional linkages to be established for known links, without
assuming presence in both. Both *_alias tables are normalized by
norm_analyte_alias_references, and fragment_sources is normalized by
norm_generation_type (described in the data node but also generated here for modularity
and not shown below).

Entity Name Description
Tables
annotated_fragments Potential annotated fragment ions that are attributed

to one or more mass spectra.
compound_aliases List of alternate names or identifiers for compounds
compound_categories Normalization table for self-hierarchical chemical

classes of compounds.
compound_fragments Bidirectional linkage table to tie peaks and

compounds to their confirmed and annotated
fragments.

compounds Controlled list of chemical compounds with
attributable analytical data.

fragment_aliases List of alternate names or identifiers for compounds
fragment_inspections Fragment inspections by users for ions that are

attributed to one or more mass spectra.
fragment_sources Citation information about a given fragment to hold

multiple identifications (e.g. one in silico and two
empirical).

norm_analyte_alias_references Normalization table for compound alias sources
(e.g. CAS, DTXSID, INCHI, etc.)

norm_fragments Normalization list of annotated fragments
norm_source_types Validation list of source types to be used in the

compounds TABLE.
Views
compound_data View raw data from all peaks associated with

compounds.
compound_url Combine information from the compounds table to

form a URL link to the resource.
view_annotated_fragments Measured fragments as compared with fixed masses
view_compound_aliases [autogenerated by sqlite_auto_view()] View of

“compound_aliases” normalized by
“norm_analyte_alias_references”.

view_compound_fragments Fragments associated with compounds.
view_compound_fragments_stats [DRAFT] Summarization view of statistics associated

with compound fragments, including the number of
times they have recorded, their measured masses,
and ppm error as compared with nominal exact
masses.

view_compounds [autogenerated by sqlite_auto_view()] View of
“compounds” normalized by “norm_source_types”.

view_fragment_count Number of fragments associated with compounds.
view_fragment_mz_stats [DRAFT] Mean measures of measured_mz values - a

supplementary calculation table.
view_fragment_sources [autogenerated by sqlite_auto_view()] View of

“fragment_sources” normalized by
“norm_generation_type”.

Figure 10. Analyte node of the entity relationship diagram (modified).

The Contributors Node

This node contains information relevant to identifying data contributors, similar to a
“users” table. It is used primarily to provide contribution statistics and tie data to data
producers in the samples and analytes node, both of which are connected to the peaks
node. When the database is built, a “sys” username with the affiliation “system” is
automatically added as a default user.

Entity Name Description
Tables
contributors Contact information for individuals contributing data to this database
affiliations Normalization table for contributor.affiliation
Views
view_contributors Readable version of the contributors table that can be expanded with

counts of contributions from various places.

Figure 11. Contributors node of the entity relationship diagram (modified).

The Data Node

This node contains mass spectral data, metadata about samples and the software used to
generate it, identification confidence, and quality control measures, as well as views to
consume it directly. It is linked to the analyte node through the compound_fragments table
and to the contributors and methods nodes through the samples table. This node contains
two sub-nodes and is the main location of analytical data. One describes samples and one
describes peaks generated from those samples Figure 12.

Entity Name Description
Tables
conversion_software_peaks_linkage Linkage reference tying peaks with the conversion

software settings used to generate them.
conversion_software_settings Settings specific to the software package used to

preprocess raw data.
instrument_properties Expandable properties describing performance

properties of the mass spectrometer at the time a
peak was measured, generally the same across a
given sample and ms_method, but not always.

ms_data Mass spectral data derived from experiments on a
compound-by-compound basis. Empirical isotopic
pattern.

ms_spectra Retained mass spectra associated with ms_data,
unencoded from ms_data.measured_mz and
.measured_intensity respectively.

norm_generation_type Normalization table for fragment generation
source type

norm_ion_states Normalization table for the measured ion state as
compared with the molecular ion.

norm_peak_confidence Normalization levels for peak identification
confidence

norm_sample_classes Normalization table linking to samples to hold
controlled vocabulary.

opt_ums_params Table of optimal parameters for uncertainty mass
spectra

peaks Peaks (or features) identified within the results
from a sample.

qc_data Detailed quality control data as assessed by expert
review (long format).

sample_aliases Alternative names by which this sample may be
identified e.g. laboratory or repository names,
external reference IDs, URIs, etc.

samples Samples from which analytical data are derived;
physical artifacts that go into an analytical
instrument. Deleting a contributor from the
contributors table will also remove their data from
the system.

Views
peak_data View raw peak data for a specific peak

peak_spectra View archived and verified peak spectra for a
specific peak

view_masserror Get the mass error information for all peaks
view_peaks View of “peaks” with text values displayed from

normalization tables.
view_sample_narrative Collapses the contents of view_samples and

view_contributors into a single narrative string by
ID

view_samples [autogenerated by sqlite_auto_view()] View
of “samples” normalized by “norm_sample_classes”,
“norm_generation_type”, and “norm_carriers”.

Figure 12. Data node of the entity relationship diagram (modified) showing the samples (top)
and peaks (bottom) subnodes with node connections to the contributors node, the analyte

node, and subnodes in the methods node.

The Logging Node

This node is included for automatic logging within the database itself (a future
development opportunity), with tables to store and normalize logs and store a database
version history. It is not used by default, but rather serves as a placeholder in case logging
should be enabled via triggers if required by the data management and quality control
systems for a given project. As it is not in use and has not been tested, details are not
included but can be queried like any other tables.

The Methods Node

This node contains data describing experimental settings, both for the chromatographic
separation and the mass spectrometer. It is the largest node, composed of four subnodes.
The mass spectrometer (“mass spec”) subnode contains information about the mass
spectrometer settings used to collect data for an experiment and is closely related to the
“descriptions” node which contains vendor descriptions for all instrumentation used in the
experiment, allowing a single mass spectrometric method to describe multiple detectors
and chromatographic separators. The quality control subnode describes the quality control
procedures that were applied. Finally, the “mobile phase” subnode describe
chromatographic conditions, allowing for multiple chromatographic components to be
described, and multiple stages of mobile phase conditions.

Entity Name Description
Tables
additive_aliases List of common aliases for each entry in norm_additives
carrier_additives Mobile phase additives mixture for a given carrier mix

collection
carrier_aliases List of common aliases for each entry in TABLE

norm_carriers
carrier_mix_collections An intermediary identification table linking

mobile_phases and carrier_mixes
carrier_mixes Mobile phase carrier mixture for a given elution method
chromatography_descriptions Full description of all chromatography types used for a

given entry in ms_methods.
mobile_phases Description of mobile phases used during a

chromatographic separation.
ms_descriptions Full description of all mass spectrometer types used for a

given entry in ms_methods.
ms_methods Mass spectrometer method settings.
norm_additive_units Normalization table for mobile phase additive units:

controlled vocabulary

norm_additives Normalization table for the carrier additives list:
controlled vocabulary.

norm_carriers Mobile phase carrier list: controlled vocabulary.
norm_ce_desc Normalization table for collision energy description:

controlled vocabulary.
norm_ce_units Normalization table for collision energy units: controlled

vocabulary.
norm_chromatography_types Normalization table for chromatography types:

controlled vocabulary.
norm_column_chemistries Normalization table for chromatographic column type:

controlled vocabulary.
norm_column_positions Normalization table for chromatographic column

position: controlled vocabulary
norm_duration_units Normalization table for mobile phase duration units:

controlled vocabulary
norm_flow_units Normalization table for mobile phase flow rate units:

controlled vocabulary
norm_fragmentation_types Normalization table for fragmentation type: controlled

vocabulary.
norm_ionization Normalization table for mass spectrometer ionization

source types: controlled vocabulary
norm_ms_types Normalization table for mass spectrometer types:

controlled vocabulary.
norm_polarity_types Normalization table for ionization polarity: controlled

vocabulary.
norm_qc_methods_name Normalization table for quality control types: controlled

vocabulary.
norm_qc_methods_reference Normalization table for quality control reference types:

controlled vocabulary.
norm_vendors Normalization table holding commercial instrument

vendor information: controlled vocabulary.
norm_voltage_units Normalization table for ionization energy units:

controlled vocabulary.
qc_methods References to quality control (QC) methods used to vet

experimental results
Views
view_additive_aliases [autogenerated by sqlite_auto_view()] View of

“additive_aliases” normalized by “norm_additives”.
view_carrier_additives View complete mobile phase used in a mixture

view_carrier_aliases [autogenerated by sqlite_auto_view()] View of
“carrier_aliases” normalized by “norm_carriers”.

view_carrier_mix View complete mobile phase used in a mixture
view_carrier_mix_collection Tabular view of carrier mix components by mixture ID
view_carrier_mixes [autogenerated by sqlite_auto_view()] View of

“carrier_mixes” normalized by “norm_carriers”.
view_chromatography_types View all chromatography types in methods
view_column_chemistries Convenience view to build view_method_as by providing

a single character string for column chemistries used in
this method

view_detectors Convenience view to build view_method_as by providing
a single character string for detectors used in this
method

view_mass_analyzers View all mass analyzers used in methods
view_method View mass spectrometer information and method

settings
view_method_narrative Collapses the contents of view_method into a single

narrative string by ID
view_mobile_phase_narrative A print convenience view creating a narrative from the

elution profile of each ms_methods_id, with one row for
each profile stage.

view_mobile_phases [autogenerated by sqlite_auto_view()] View of
“mobile_phases” normalized by “norm_flow_units” and
“norm_duration_units”.

view_ms_descriptions [autogenerated by sqlite_auto_view()] View of
“ms_descriptions” normalized by “norm_ms_types” and
“norm_vendors”.

view_ms_methods [autogenerated by sqlite_auto_view()] View of
“ms_methods” normalized by “norm_ionization”,
“norm_voltage_units”, “norm_polarity_types”,
“norm_ce_units”, “norm_ce_desc”,
“norm_fragmentation_types”, and “norm_ms_n_types”.

view_qc_methods [autogenerated by sqlite_auto_view()] View of
“qc_methods” normalized by “norm_qc_methods_name”
and “norm_qc_methods_reference”.

view_separation_types Convenience view to build view_method_as by providing
a single character string for chromatography type

Figure 13a. Mass spectrometer subnode of the methods node (modified).

Figure 13b. Chromatographic and instrumental descriptions subnode of the methods node
(modified).

Figure 13c. Quality control subnode of the methods node (modified).

Figure 13d. Chromatographic mobile phase information subnode of the methods node
(modified).

The Reference Node

This node contains universally applicable reference information for chemical metrology.
Data for elements, their exact masses, and their natural isotopic abundances are
automatically added as part of the database build process. It also includes a configuration
table that, when built, will contain the current datetime stamp and an 8-character HEX
installation code that should assist with any later combinations or referencing across
database installations. This node does not directly connect to any others but serves only for
computational convenience.

Entity Name Description
Tables
config Installation code to facilitate widespread usage.
elements Normalization list of periodic table elements 1-118.
isotopes Elemental isotope abundance ratios for comparison and

deconvolution.
Views
view_exact_masses Exact monoisotopic masses for elements at their highest

abundance.
view_element_isotopes A view of all elemental isotopes and their relative abundances

joining reference tables “elements” and “isotopes”.

Figure 14. Reference node of the entity relationship diagram (modified)

Script Generated Views and Triggers

Creation of “denormalization views” Figure 9 and certain triggers can be accomplished in R
with the sqlite_auto_view and sqlite_auto_trigger functions. These parse SQL
definitions as demonstrated in Figure 4. For views, this results in a view of the table where
foreign key indices are replaced by their human readable values where the linked
normalization table is the simplest case of id and value columns.

Foreign key enforcement is provided for table columns linked to two-column normalization
tables by automatically generated triggers. These triggers will examine the value of any
supplied value to the column and replace it with the linked index. If a value does not exist, it
will be added to the normalization table and the resulting index used. This is a crude data
integrity measure for when the database is accessed without explicitly turning on foreign
keys. Under normal circumstances the foreign key enforcement will take care of this issue
but these are provided here as a backup.

To exclude automatic views and triggers, simply remove calls to those files in the
build.sql file.

Populating Data at Build

Populating data can be accomplished automatically at build time from CSV or SQL files,
allowing for rapid iteration and rebuild. Data population is defined by SQL scripts in the
config directory. If the sqlite3 CLI is available (recommended) data are imported from CSV
files using a series of .import commands, one for each table being populated. If the sqlite3
CLI is not available, instead use a fully qualified native SQL script such as the one provided
at “config/build_full.sql” to build the schema and populate data in one step; this is less
customizable but serves as a bridge for when CLI tools are not installed.

Compute Environments

Several environment resolution options are available in this project depending on which
aspects are requested by the user. The default setting in the R/compliance.R file creates an
R session that (1) connects to a database, (2) turns on the logging functionality, (3) turns
on argument validation for certain R functions, (4) makes rdkit available to that session,
and (5) spins up an API server in a background process; this can take a considerable
amount of time (e.g. up to 3 minutes on slower systems; more typically this is around 90
seconds) and may be slower than users are accustomed to when loading packages.
Environment values are set by configuration files, most of which are described in the
Project Set Up section. To increase system compatibility, these are not set at the system
level, but rather kept at the session level.

Users likely will not need every aspect each time. Starting an R session that can (re)build or
connect directly to a database, or simply launching the API server, does not require every

aspect. Editing the environment files, primarily in config/env_glob.txt and config/env_R.R
(Table 1; Table 2) will determine which aspects are made available in the session.

Users may choose whether to connect to the database (and load all the database
communication support) at load time; this generally is not a time intensive operation, but
connection validation and loading of additional packages does increase load time
somewhat. If the connect option is selected and a database file with the defined name does
not exist, it will be built according to the build settings in Project Set Up.

Users similarly may choose whether to launch the API server which adds additional
dependencies. This can be done in an active session at any time after loading using
api_reload with the background parameter determining if it should be launched in the
current session or in a background process; the default is to launch it in a background
process and return control to the session. The same function will allow the service to
reload if any changes are made to API functionality in the “inst/plumber/plumber.R” file.

Using rdkit slows down the load time considerably as the R session must resolve, activate,
and bind to a python environment. While it is recommended it is not required; set
INFORMATICS to FALSE to turn this feature off.

For developers, two convenience functions are available to jump to specific files within the
project. These require RStudio to use but will open identified files for viewing and editing.

• open_env will open an environment file. The name parameter must be one of the six
defined environments (i.e. “R”, “global”, “logging”, “rdkit”, “shiny”, or “plumber”); the
default is “R” (e.g. open_env(“logging”) to edit the logger environment settings).
Name options are hard coded to specific paths for this version;

• open_proj_file will open any file in the project, though its main use is for R script
files. File identification is accomplished by regular expression matching on files in
the project directory, and in the case of multiple matches it will instead return a list
of those files. As always, functions can be viewed in the RStudio viewer with
View(fn).

To determine whether an environment has been established, boolean session variables are
set when each file is sourced with the prefix RENV_ESTABLISHED, one for each aspect.
Adding functionality during an active session will check for these and if they are required
and do not exist, will automatically add necessary components to the current environment.

Shiny Applications

This user guide does not provide details on developing shiny applications. Shiny apps are
enabled through the environment file at inst/apps/env_shiny.R and will load necessary
packages (see References). These are automatically installed if not present the first time
the application is launched on any given system.

Applications are located in the inst/apps directory and are self-contained in
subdirectories by app name. The three that ship with the project are in the “three file”
format of global.R, ui.R, and server.R and make use of the API for database
communication; they will launch the API server in a background process if it is not already
running. To add a live database connection to a new app, simply add the connection object
to global.R for that app and develop as normal.

A skeleton application making use of project tooling is also provided. Simply copy the
inst/apps/app_template directory under a new name and begin developing any needed
shiny app as normal. Additional helper functions are defined in the
inst/apps/shiny_helpers.R file such as the ability to easily append tooltips to any given
shiny widget.

This section lists out the three applications that ship with the project and gives a brief
description of them. Each are detailed in their own chapters.

Table Explorer

This Shiny application is simple example included with the project. It provides information
about tables and views in an intuitive interface and details not only their contents but the
entity definition and links to other entities in a human-readable format. Launch it after the
compliance script has been run with run_app(“table_explorer”) or from the console or
command line with shiny::runApp(“inst/apps/table_explorer”) which will solve the
environment and launch the application. A developer mode is also available, allowing users
to click the “Inspect” button to drop into an interactive R session to view (set dev = TRUE in
global.R inside the app directory). The application includes only two screens, one (“Table
Viewer”) to preview data available there and to view structural information for an entity
selected, and another to view a high-resolution picture of the entity relationship diagram
that can be downloaded or examined in a separate browser tab with the right-click context
menu option to open an image in a new tab.

This application served as proof-of-concept for environment resolution and API
communication, and to provide DIMSpec users and developers a way to visualize
connections between database entities.

The Table Explorer application is detailed in its own section.

Figure 15. Screenshot of the “Table Explorer” shiny application showing database structural
information available at a glance for the view_exact_masses database table.

Mass Spectral Match (MSMatch)

This Shiny application could easily be considered the entire reason behind the genesis of
the DIMSpec project. It was built specifically to accelerate non-targeted analysis projects by
searching experiment result data in mzML format for matches against a curated mass
spectral library of compounds and annotated fragments. MSMatch is a web application
built using the Shiny package in R and installs alongside DIMSpec and is one example of a
tool that can built on top of the DIMSpec toolkit. Launch it after the compliance script has
been run with run_app(“msmatch”) or from the console or command line with
shiny::runApp(“inst/apps/msmatch”) which will solve the environment and launch the
application. Databases built and managed with DIMSpec are SQLite files used within a
distributed R Project. Scripts for automated setup are included. For this initial release,
DIMSpec is distributed with data populated for per- and polyfluorinated alkyl substances
(PFAS); that effort has been primarily supported by the Department of Defense Strategic
Environmental Research and Development Program (DOD-SERDP), project number ER20-
1056.

The MSMatch application is detailed in its own section.

Figure 16. Screenshot of the “Mass Spectral Match” application with user data showing
matches to known mass spectral signatures.

https://www.psidev.info/mzML
https://serdp-estcp.org/
https://www.serdp-estcp.org/projects/details/a0bb4198-02cd-44b9-9e73-9ef916e7f7e0/er20-1056-project-overview
https://www.serdp-estcp.org/projects/details/a0bb4198-02cd-44b9-9e73-9ef916e7f7e0/er20-1056-project-overview

DIMSpec Quality Control (MSQC)

This Shiny application serves as an automated application of quality control and assurance
functions built to assess data contributions to DIMSpec. There is no "hard stop" based on
these quality checks, but the results of the quality checks are included alongside data
contributions when they are selected for addition to a DIMSpec database. Data in the mzML
format and an associated JSON file produced by the NIST NTA-MRT tool are loaded into the
application and then each may be selected to evaluate data quality. Specific conversion
parameters must be used during conversion from the raw instrument output. For each
peak within each raw file the following checks will be performed.

1. Is the reported precursor ion m/z value within the reported instrumental error of
the calculated precursor ion m/z of the designated compound?

2. Does the MS1 isotopic pattern of the submitted data match the calculated isotopic
pattern with a match score above an expected value?

3. Is the reported precursor ion m/z value present in the MS1 mass spectrum of the
submitted data?

4. Are the reported annotated fragment ion m/z values present in the MS1 mass
spectrum of the submitted data?

5. Are the reported annotated fragment ion m/z values value within the reported
instrumental error of the fragment ion m/z of the designated fragment, calculated
from the elemental formula?

6. If there is a SMILES structure provided for an annotated fragment, does the
elemental formula of the SMILES structure match the elemental formula provided
for the same annotated fragment?

Finally, optimized settings for the uncertainty mass spectrum of the MS1 and MS2 data are
calculated to facilitate searches for submitted compounds.

The MSQC application is detailed in its own section. Launch it after the compliance script
has been run with run_app(“dimspec-qc”) or from the console or command line with
shiny::runApp(“inst/apps/dimspec-qc”) which will solve the environment and launch
the application.

Logger

Logging status and meaningful messages to both the console for interactive sessions and to
disk allows for more efficient troubleshooting and debugging, as well as status reports on
performance. Logging is enabled by default in the project and implemented by custom
functions on top of the logger package. That package supports namespaced logging at
various levels and prints nicely to the console if provided with a formatter function. This
user guide does not go into detail about the logger package, but documentation is readily
available online.

Logging parameters are set when the compliance script is sourced (see Project Set Up).
Settings are stored in a session list LOGGING with each element named for a namespace.
Turn off logging by setting LOGGING_ON = FALSE in the set up process. At any time during a
session, you may change the logging settings and run the update_logger_settings
function to change the way to logging functions are working. Setting the $log property to
FALSE will cease printing and recording of log messages for that namespace. Options for the
$to property include “file”, “console”, and “both” and, if this is either “file” or “both”, logs
will be written to the path in the $file property. The threshold must be one of the valid
options in logger, which is a ranked vector (i.e. one of “trace” < “debug” < “info” <
“success” < “warn” < “error” < “fatal”); the $threshold property represents the
minimum level at which to record logs. If, for example, the threshold is set to “info” then
“trace” and “debug” messages will be ignored.

Users may then issue logging statements directly through logger using the $ns property
namespace. The primary manner of issuing logging messages in the project however is the
log_it function which works without logger to display messages in the console and
includes an abstraction and validation layer that provides the benefits of argument
validation, ignoring certain function calls, inclusion of the function from which log_it was
called, and setting up new namespaces by cloning the settings from an existing one. If
logger is available, logs will print nicely to the console and be saved to disk if set to do so.
Logs written to disk can at any time be read back into the session either printed to the
console (read_log) or to a data frame (log_as_dataframe) for examination.

https://daroczig.github.io/logger/
https://daroczig.github.io/logger/

Logs are not tracked in the git repository for the project as each installation should have
isolated logs. The logger package supports rollover past a certain size. The log directory
(or any directory, though that is not recommended except in the case of a directory of
temporary files) can be flushed at any time with the included function
flush_dir(directory = “logs”, pattern = “.txt”) where directory is the name of an
available directory and pattern is a regular expression used to match files to remove.
Matching files will be removed by default but can be archived with the current date suffixed
to the file name by setting archive = TRUE.

Plumber

Communication with the underlying database is performed by default using a background
process through the plumber package, which produces a RESTful API and offloads
processing to a separate R process. It is recommended to communicate with the API using
the api_endpoint function which takes as arguments mainly the endpoint path and any
named criteria necessary to execute the endpoint, however, the plumber service can be
used with any API query method (e.g. httpuv, httr, curl, etc.). The api_endpoint function
accepts any server address and path (if the path includes the address it will ignore the
server_addr argument), accepts any additional arguments needed to use the endpoint
with the ellipsis (including advanced parameters for other APIs), will return the
constructed call rather than executing it with execute = FALSE, will return values to the
session (the default) or in a browser window with open_in_browser = TRUE, and can
return results in a variety of formats. Plumber APIs communicate in JSON strings. Set the
return_type and return_format appropriately for what you expect back from the server;
the default is a vector.

The environment for the API is defined at inst/plumber/env_plumb.R; package
requirements are resolved as part of the environment. When launched as a background
process the name of the resulting object is drawn from the env_plumb.R file, by default
plumber_service. During launch the server will add several R scripts from defined files in
the project directory; more can be added by modifying the r_scripts variable. Logging is
turned on by default for the API as no interactive session is available. Finally, rdkit
integration is enabled and a connection is established with the project database as defined
elsewhere. Any of these settings can be customized for use.

Certain options which may also be changed are set at the project level in
"config/env_R.R", which is necessary to share values and keep sessions connected
appropriately. Those options include the PLUMBER_VERSION (if you are iterating for
development, testing, or deployment), PLUMBER_HOST, PLUMBER_PORT, and PLUMBER_FILE.
These should generally not be changed, but certain network configurations may require
alterations to the host and port. It is recommended in that case to set options
(e.g. getOption("plumber.host") and getOption("plumber.port")) in the project or user
.Renviron file or in the session prior to running the compliance script to set other values;
the compliance script will honor those settings. The default listening port is

http://127.0.0.1:8080; Swagger documentation will be available at
http://127.0.0.1:8080/__docs__ until the server stops.

To restart the API server from an R session, use the api_reload function. This will close
and relaunch the service in a background process and return control to your session. Call it
with background = FALSE to launch it directly within the current session, which will
automatically launch a browser pointing to the Swagger documentation. By default
api_reload pulls its parameters from the current compute environment. To launch a
second API server with different endpoints under a different name, use api_reload with
different parameters, e.g.:

api_reload(
 pr = "api_service2",
 plumber_file = "new_plumber.R",
 on_host = "127.0.0.1",
 on_port = 8085
)

The background process is launched using callr::r_bg and the health of resulting object
can be checked with the api_service2$is_alive() property for the example above. With
the server running, call api_open_doc with the API URL (e.g. http://127.0.0.1:8085 for
the example above) to launch a browser with the documentation.

Plumber endpoints are decorated R functions available to a routing server managing
transactions for request and response. Endpoint specifications that ship with the project
are defined in the inst/plumber/plumber.R file. Plumber uses the OpenAPI specification
and provides interactive Swagger documentation once the server is active. Any R function
can be turned into a plumber endpoint, or an endpoint can be defined that uses an existing
R function if that function is available in the environment. The latter case is the one used
most often in this project; a modified version of the function is created and then redirected
as needed. This allows flexibility to be able to handle any preprocessing necessary
(e.g. unpacking JSON or argument verification) before calling the underlying function while
keeping that function available for interactive use. Several endpoints are provided in the
project and are described in the following paragraphs.

Two filters are defined that will ensure a database connection is alive and log incoming
requests prior to forwarding to their destination path.

Three health endpoints are defined:

• “_ping” checks to make sure the server is ready to respond to requests and returns
“Ok” if so; if the server is not yet ready (e.g. it is still resolving its environment)
calling with api_endpoint(“_ping”) will try a number of times (20 is the default)
before it times out;

• “db_active” and “rdkit_active” return Boolean values for whether the API can
communicate with the database and rdkit, respectively.

Four inspection endpoints are defined to assist with debugging:

https://swagger.io/

• “version” returns the value defined by PLUMER_VERSION to ensure the running
version meets expectations;

• “support_info” endpoint returns a nested list of system and project properties
drawn from the environment files and server information; it is roughly equivalent to
the support_info project function intended to facilitate support tasks during
deployment;

• “exists” returns a Boolean value for whether a function exists in the server
environment;

• “formals” returns the names of formal arguments for a function by name as defined
in the server environment and is roughly equivalent to the base R function
“formals” when called as a list.

Both “exists” and “formals” must be called with the function name appended to the path
(e.g. “formals/build_db”).

The remaining twelve endpoints perform database queries or actions:

• “compound_data” returns mass spectral data for a compound by its internal ID
number;

• “list_tables” and “list_views” lists tables and views, respectively, in the database;

• “method_narrative” returns the mass spectroscopic method narrative for a peak,
sample, or method by its database primary key id;

• “molecular_model/file” and “molecular_model/png” use rdkit to generate and
return either (“/file”) a file path to a molecular ball-and-stick plot of a compound or
fragment in portable-network-graphics (png) format or (“/png”) the graphic itself.
If notation is provided, it must match the notation_type provided;

• “peak_data” returns mass spectral data for a peak by its internal ID number;

• “sample_narrative” returns the plain text narrative for a sample by its database
primary key id;

• “search_compound” uses search_precursor or search_all to find matching
compounds for a processed mass spectrum object in JSON notation. This does no
preprocessing of the search_ms item and only executes the defined search on the
database. The serialized version of the object created from create_search_ms is
much smaller than that of serializing the entire mzML object;

• “search_fragments” uses get_compound_fragments and additional processing to
find matching fragments from the database for a list of fragment mass-to-charge
ratios;

• “table_search” is equivalent to build_db_action for SELECT queries and is the
most flexible way to query the database.

More information about these endpoints is available using the Swagger documentation,
which includes live testing for endpoints. New endpoints can be defined easily, and the
server can be quickly relaunched at any time with api_reload.

Python

Python is an open-source general programming language with similar aspects to R.
Packages are controlled by environment management programs, the most common of
which is the “conda” package manager available through installing either Anaconda or
Miniconda. Integrating R and Python requires the reticulate R package which allows for
miniconda to be installed independently. If no installation can be identified, the compliance
script of this project will install miniconda through R. Python environments are sets of
packages tied to a python distribution and must be established prior to use; when using
reticulate to integrate R and Python that environment must include the r-reticulate
python library. Environment resolution should in most cases be left to the compliance
script but is described below for both completeness and to support and inform non-
standard installations of python and package management solutions. There are several
settings in the “inst/rdkit/env_py.R” environment script that may be changed to comply
with systems using advanced or non-standard python package management approaches.

Setting Type Description
PYENV_NAME String The name of the python environment (conda

preferred) to use. It must contain rdkit and r-
reticulate and can be solved using the provided .yml
file; defaults to "nist_hrms_db" but can be easily
customized for any installation. This is only a name
reference to activate and, if necessary, build a python
environment (be default a conda environment).

PYENV_REF String The name of the R session object which will be tied
with rdkit functions; defaults to "rdk".

USE_PY_VER Numeric The version of Python to install into the PYENV_NAME
environment; defaults to 3.9.

INSTALL_FROM String For stability, this should be "local" in most cases
which will build from the file located at
INSTALL_FROM_FILE.

INSTALL_FROM_FILE String
Path

The file path to a local environment.yml file to be used
to build the python environment using functions
provided in this project.

PYENV_LIBRARIES String
Vector

A fall-back list of python packages required if
INSTALL_FROM_FILE fails on your system, assists with
manual creation using reticulate.

PYENV_MODULES String Module names that must be present and available in

Vector the environment; defaults to "rdkit" which is the
only required library for this project.

PYENV_CHANNELS String
Vector

Channels from which to install python libraries;
defaults to "conda-forge" for consistency. Other
channels can be added for customization and non-
conda package distributions.

CONDA_PATH String
Path

Under most circumstances, this should always be left
as the default "auto" though advanced set ups may
have other requirements and, in that case,
(e.g. multiple installations) this should be a file path to
a conda executable that will be used for this project.

Several project functions exist to create, activate, and manage python environments
through reticulate. These are housed in the “inst/rdkit/py_setup.R” file and
documentation is available with fn_help(fn) where fn is the name of the function either
quoted or unquoted. The most user friendly of these is: rdkit_active which wraps the
other function calls in a flexible arrangement pulling from environment settings and has
the following arguments inheriting the above settings:

rdkit_ref defaults to PYENV_REF (see above)
rdkit_name defaults to PYENV_NAME (see above)
log_ns the logging namespace to use, defaults to “rdk”
make_if_not must be a TRUE/FALSE value indicating whether an rdkit environment

as defined in the table above should be installed if it is not already
available (defaults to FALSE)

Chemometric operations are performed by the rdkit package (as built into this python
environment) which is a wrapper for the underlying C library and is used here primarily by
the plumber server with the reticulate package. This ROA does not include a tutorial for
rdkit.

The first time the project is used, sourcing the "R/compliance.R" script should
automatically set up the compute environment. The python module is published to the
conda registry as "rdkit" in the "conda-forge" channel. To minimize package conflicts, it
is recommended that it be installed with packages only from the "conda-forge" channel
and forced to python 3.9 for the current version of this project. With conda installed and
available in your PATH environment, there are two options to manually create the required
environment. (If miniconda is installed through R this will not be available.) In a terminal
prompt open at the project directory, this can be created from the provided environment
file with:

conda create -n nist_hrms_db -f inst/rdkit/environment.yml

or created directly from any directory with:

conda create -n nist_hrms_db -c conda-forge python=3.8 reticulate=1.24
rdkit=2021.09.4

Again, functions in the project should take care of the set up as part of the environment
resolution but may fail on certain systems. Note that the environment name
"nist_hrms_db" is only a recommended environment name and could be anything, but in
either case must match that provided in the configuration file at inst/rdkit/env_py.R as
variable PYENV_NAME. There is no need to activate this environment, but testing it is
considered good practice. Once the compliance script is run and rdkit is available
(typically as the R object rdk), all rdkit functionality can be used (e.g. create a mol file from
the SMILES string for hexane using rdkit$Chem$MolFromSMILES("CCCCCC").

Importing Data

For now, importing data is only supported at the command line using JSON mzML files
generated by the NTA MRT tool. For other uses, import routines will need to be developed
to translate source data into the database schema. Several import file examples are
provided in the example directory. Import requirements are defined in the file
“config/NIST_import_requirements.json” and each file is screened against this list.
During the import process, files are parsed with the import map defined in
“config/map_NTA_MRT.csv”

The easiest way to demonstrate the import routines (which are largely described in
Importing Data) from within an R session (the following requires that packages magrittr
and stringr be loaded) is to create a list of files to import (e.g.)

f_dir <- file.path("example")
here “example” could also be a network path
f_names <- list.files(f_dir, ".JSON$", full.names = TRUE)
to_import <- lapply(
 f_names,
 function(x) fromJSON(read_file(x))
) %>%
 setNames(
 str_remove_all(
 f_names,
 sprintf("(example%s|.JSON$)", .Platform$file.sep)
)
)

verify these files meet import requirements and expectations:

obj_check <- verify_import_requirements(to_import)
cat(
 sprintf("Required data are %spresent.\n",
 ifelse(all(obj_check$has_all_required), "", "not ")),
 sprintf("Full detail data are %spresent.\n",
 ifelse(all(obj_check$has_full_detail), "", "not ")),

 sprintf("Extra data are %spresent.\n",
 ifelse(any(obj_check$has_extra), "", "not "))
)

and examine the resulting obj_check session object, a data frame of verification checks
which can be filtered and searched as normal Figure 17. The missing_requirements,
missing_detail, and extra_cols columns in the resulting data frame are list columns detailing
any number of verification failures and which elements were missing or not in the import
mapping definition.

Figure 17. Screenshot of the results from importing a directory of data files in JSON format
and verifying they meet import expectations.

This verification check is run automatically as part of the full_import pipeline, with the
following parameterized options to determine behavior based on verification of individual
components of the import object:

• exclude_missing_required
– defaults to FALSE
– Rather than the import pipeline failing, set this to TRUE to ignore and

exclude (and get a list of failures) files that do not meet import requirements.
• stop_if_missing_required

– defaults to TRUE
– Stops the import process if files do not include all requirements. This is

forced to TRUE when exclude_missing_required is FALSE to ensure integrity.
• include_if_missing_recommended

– defaults to FALSE
– By default, files missing recommended information are skipped from the

import process, under the assumption that data may be missing. Set to TRUE
to include these.

• stop_if_missing_recommended
– defaults to TRUE

– Stops the import process if files do not include all recommended data.
• ignore_extra

– defaults to TRUE
– Rather than the import pipeline failing, set this to TRUE to ignore and exclude

(and get a list of failures) data in files that are not expected given defined
import requirements.

• ignore_insert_conflicts
– defaults to TRUE
– Rather than the import pipeline failing, set this to TRUE to ignore and exclude

(and get a list of failures) insert conflicts during database write operations.

This user guide does not completely detail all of the parameters for the full_import
function as most are schema specific and passed to underlying action functions. See the full
function documentation if interested. The import pipeline resolves each of the SQL Nodes
in order and makes liberal use of console feedback during the process when it cannot
automatically resolve:

1. Contributors are resolved under the expectation that this may be often repeated
for a given set of import files; a temporary data frame is created that maps provided
contributor identifiers to known contributors and, where resolution fails, prompts
the user to either create a new contributor record or map that value to an existing
contributor which is then maintained for the remainder of the import process.

2. Methods are resolved by examining the mass spectrometric method properties
(i.e. ionization type, voltage, polarity, collision energy, etc.) and matching against
known methods, allowing for deep linking of data that were generated using the
same mass spectrometry method; additional instrument properties are also
recorded in a linked table allowing for an unlimited number of records to be
attached.

3. Descriptions are resolved for the models and properties for any number of mass
spectrometer and chromatographic separation system configurations used to
generate data; conceptually, this could result in conflicts if the exact same method
settings are used across multiple systems, but collisions are highly unlikely.

4. Sample properties and the mzML file used to generate data are resolved and can
have attached any number of aliases for a single sample including external
identifiers and links to those data sources; similarly to the methods node, sample
properties are first matched against known samples to enable deep linking and for
data from samples to be reanalyzed while maintaining linkages to previous data.

5. Chromatography condition descriptions for sample and method are resolve to an
open-ended collection of carrier information including flow rates and carrier mixes
with individual components and additives.

6. Quality control descriptions resolve to QC methods and open-ended result data
used for a given sample and method with references to defined QC.

7. Peak information about features of interest measured in a sample is resolved
including retention time, precursor ions, the number of points measured across a
peak, and any identification confidence associated with it; conversion software

settings (e.g. from processing with msconvert) are also linked as are optimal
uncertainty mass spectra parameters to assist with spectral matching; measured
m/z and intensity values are housed here, typically in a format describing all m/z
and intensity values in a single row; for highly trusted spectra needing more
advanced or rapid search capabilities, these data can also be unpacked into a long
form table of the same data;

8. Compound reference information is resolved for known analytes including where
data originated, known or calculated exact mass and molecular other properties,
their common and machine-readable aliases, and optionally chemical
categorization; when data from an identified compound are submitted, compounds
are matched by all known aliases prior to being added into the table and resolved to
the known internal identifier.

9. Fragments annotated in the data submission either with or without a known
structure are resolved for known fragments and is matched to known aliases to
firmly identify fragment identity and limit size creep and are normalized (fragments
with a known structure are kept separate from those with only elemental formula
notations); inspection records are also available for future annotation notes of
known fragments.

10. Peak, fragments, and compound linkages are resolved in the compound_fragments
table providing flexible linkages for peaks representing only known compounds (no
fragment annotation), peaks with only annotated fragment information (no
compound identification), and compounds with known annotated fragments but no
peak data yet in the system, allowing for any combination of known information to
be populated a priori mass spectrometric data are collected.

Each node is resolved using a specific function that is called during the full_import
pipeline. Normalization resolution is accomplished using resolve_normalization_value
which checks known values in a normalization table and, when encountering an unknown
entry, prompts the user to either map it to a known value or to add a record to that table.
This is leveraged heavily throughout and is the main reason the import process (for now) is
only available for interactive console sessions. This is what allows the pipeline to maintain
identifiers throughout the import process while populating individual data tables.

Future Development

Both the R/Shiny and python code are fully extensible and community stakeholder
feedback will be important for the future success of this project. Future development may
include deployment of and to a Shiny server to host shiny applications, extending the
python code to analyze data of various formats from different instruments, and adding
analysis features and functionality (e.g. high resolution plot generation and download, or
supporting the full workflow from instrument through import and to report generation)
requested by stakeholders.

Conclusions
The Database Infrastructure for Mass Spectrometry (DIMSpec) project provides a new way
to rapidly create and iterate databases to combine data from mass spectrometry
experiments and associated metadata about the analytical methods and samples used to
generate those data. It is hoped that this toolkit makes a standard schema easily accessible
to both internal and external stakeholders and that it can potentially be reused for any
projects within the Chemical Sciences Division that generate mass spectrometric data; by
structuring such data in a common schema the Division will be one step closer to a shared
data environment allowing for federated data management while supporting customized
add on tools for data processing and display. For one example of how this structure can be
used, we highlight the “Mass Spectral Match (MSMatch) for Non-Targeted Analysis”
application, which demonstrates how new data in mzML format can be used to interrogate
a version of this database populated with high resolution non-targeted mass spectral data
of per- and polyfluorinated alkyl substances to match both compounds and annotated
fragments and accelerate NTA projects.

Shiny Web Applications

Table Explorer

To facilitate visual exploration of the DIMSpec database schema, a web application was
written in Shiny. It served as proof-of-concept for the database/API/shiny approach and
was used as the basic skeleton of the template app that ships with the project.

Table Explorer is a simple entity viewer for the attached database. Combining the comment
decorations in DIMSpec and reading of entity definitions from the database (see Inspecting
Database Properties) allows for R to expose a wealth of information about the underlying
schema and quickly change which entity is being viewed. See Shiny Applications for details
of how to launch this app, but the easiest method is after the compliance.R script has been
executed, use start_app("table_explorer") to launch it in your preferred browser.

Table Viewer

There is only one page for interactive content, named “Table Viewer” (Figure 1). A
navigation bar on the left controls the current page being viewed; collapse the bar using the
“hamburger” icon (≡) at the top next to the NIST logo. Click the drop down box (Figure 2 -
left) to change the database table or view being displayed. This will update the definition
narrative immediately below the selection box (Figure 2 - right) and display the contents of
that table (Figure 3).

Figure 1. The Table Explorer main page.

Figure 2. Choose a database entity (left) for information about its definition (right).

Figure 3. Data held in the selected entity.

Entity Relationship Diagram

A full graphical representation of the entity relationship diagram is also provided. A full
resolution version of this graphic is available from inside the app by right-clicking it and
opening it in a new tab.

Figure 4. Entity Relationship Diagram

DIMSpec Quality Control (MSQC)

Introduction

One goal of the Data Infrastructure for Mass Spectrometry (DIMSpec) project is to provide
a database that can be easily retasked to support individual projects within the Chemical
Sciences Division to manage data coherently and accelerate analyte identification,
screening, and annotation processes for non-targeted analysis projects. Databases built and
managed with DIMSpec are SQLite files used within a distributed R Project. A DIMSpec
mass spectral database incorporates empirical mass spectral data from analytical
standards and complex mixtures with relevant analytical method metadata and mass
spectral annotation. Algorithms have been developed in R to validate the quality of new
experimental data.

For ease of use, the DIMSpec Quality Control (MSQC) application was developed that
incorporates the R functions into a R/Shiny application. Scripts for automated setup are
included. For this initial release, DIMSpec is distributed with data populated for per- and
polyfluorinated alkyl substances (PFAS); that effort has been primarily supported by the
Department of Defense Strategic Environmental Research and Development Program
(DOD-SERDP), project number ER20-1056.

Set Up Instructions

The MSQC application installs alongside DIMSpec. If there is continued (or expanded)
interest, the project could be turned into an R package installable directly from GitHub with
additional development or this tool can be deployed to a hosted shiny server for use
without the need for launching or maintaining it locally. For now, this application is
distributed for demonstration and evaluation with an implementation of NIST DIMSpec
containing high resolution accurate mass spectrometry data for per- and polyfluorinated
alkyl substances (PFAS). The R project can be opened in RStudioiv which may be
downloaded and installed free of charge if not already installed. Initial set up does require
an internet connection to install dependencies; on a system which does not contain any
software components this can take a considerable amount of time.

Refer to the System Requirements section for installation details.

Input File Format Requirements

To use MSQC, raw data files produced by a mass spectrometer must be converted into
mzML format (Deutsch 2010) using Proteowizard’s msConvert software (Adusumilli,
Ravali and Mallick, Parag 2017). There are specific parameters that must be used during
conversion.

https://serdp-estcp.org/
https://www.serdp-estcp.org/projects/details/a0bb4198-02cd-44b9-9e73-9ef916e7f7e0/er20-1056-project-overview
https://www.rstudio.com/
https://proteowizard.sourceforge.io/

Filter: Threshold peak filter
Threshold type: absolute
Orientation: most intense
Value: 1
Filter: Peak picking
Algorithm: vendor
MS levels: 1-2

A more detailed user guide for converting these files is provided as a vignette in the project
directory.

Non-Targeted Analysis Method Reporting Tool

A macro-enabled Microsoft Excel workbook, called the Non-Targeted Analysis Method
Reporting Tool (NTA-MRT), is used for the systematic collection of sample, method, and
compound information related to chemicals identified in a sample. The most up-to-date
version of NTA-MRT is publicly available at GitHub.

The instructions for completing the NTA-MRT are contained within the tool itself. In order
to use the MSQC application, a sample.JSON file must be generated using the “Export to
JSON file output” button on the first tab of the NTA-MRT.

The file name entered in the NTA-MRT under the Sample tab must exactly match (case-
sensitive) the paired mzML file name to be used for the MSQC.

Launching MSQC

Launch this tool similarly to other “shiny”-based tools as part of DIMSpec. In brief, this can
be done from a terminal or the R console, though the preferred method is to use RStudio
(RStudio Team 2020). The following commands are typical given an existing installation of
R or RStudio and should always be run from the project directory. The shiny package
(Chang et al. 2021) and other necessary R packages will be installed if it not already
available by running the script at R/compliance.R, but shiny is the only package required
to start the application. When first run, it may take a moment to install necessary
dependencies and launch the application programming interface (API) server.

Terminalv

R.exe “shiny::runApp(‘inst/apps/dimspec-qc’)”

R console

shiny::runApp(‘inst/apps/dimspec-qc’)

RStudio

https://github.com/usnistgov/NISTPFAS/tree/main/methodreportingtool

Open the “.Rproj” project file in RStudio, navigate to the “inst/apps/msmatch”
directory, open one of the “global.R,” “server.R,” or “ui.R” files, and click the “Run
App” button. Files open in an RStudio project will remain open by default when
RStudio is closed, allowing users to quickly relaunch by simply loading the
project. For best performance, ensure “Run External” is selected from the menu
“carrot” on the right to launch the application in your system’s default web
browser. This application has been tested on Chrome, Edge, and Firefox.

Alternatively, once the compliance script has been executed MSMatch can be launched
using start_app("dimspec-qc").

Once launched the API server will remain active until stopped, allowing users to freely
launch, close, and relaunch any shiny apps dependent upon it much more quickly. The
application is fluid and will dynamically resize to fit the dimensions of a browser window.
By default, the server does not stop when the browser is closed. This means that, once
started, it is available by navigating a web browser back to the URL where it launched until
the server is shut down.

If anything is needed from the user, interactive feedback will occur in the console from
which it was launched. Install any packages required if prompted by the application. Once
the package environment requirements have been satisfied and the server has spun up,
which may take a moment, the tool will launch and display the “About” screen (Figure 1)
either in the RStudio viewer or the browser. The navigation panel on the left will control
which page is currently being viewed; click an entry to navigate to that page.

While this version of DIMSpec includes analytical data for PFAS, MSQC can be tailored for
any given database name. See Technical Details>Application Settings for customization
options.

Figure 1. The home page for the MSQC web application contains basic information about the
application and can be tailored easiliy for each use case.

Using MSQC

Every effort has been made to make using the MSQC application as intuitive to use as
possible. Generally the user interface will adjust to the current needs and highlight the next
step. Some steps (e.g. 2 and 3) can be used interchangeably.

Step 0 - Modify quality control settings (optional)

Prior to file processing, verify or set parameters to be used for quality control analysis can
be modified. On the left menu, select “QC Settings” to navigate to the settings dashboard
shown in Figure 2. The default settings are recommended, but can be modified if needed.

Figure 2. The QC Settings window that has settings that can be adjusted for quality control
analysis, the uncertainty mass spectrum settings are described in Place 2021.

Step 1 - Import mzML and Sample JSON Files

Upload paired mzML and sample JSON files produced by the NTA-MRT macros
(conventionally named “filename_mzml_sample.JSON”). First, select “Data Import” on the
left menu or the “Click Here to get Started” button from the “About” page to bring up the
Data Import page Figure 3. Multiple files may be uploaded; the limit of number and size of
files is dependent on system memory. By default the maximum size of a single file is 250
MB, but this limit can be increased by changing the setting of file_MB_limit in the
global.R file.

First, load the mzML files of interest using the top “Load” button or by dragging the data
file(s) to the input widget labeled 1) Load raw mzML file(s).

Second, load the paired sample JSON files using the second “Load” button or by dragging
the JSON file(s) to the input widget labeled 2) Load Sample JSON file(s). The sample JSON
files do not need to be selected in the same order as the mzML files and will be matched by
name when processed.

Figure 3. The data import page of MSQC where data files, experiment parameters, and
features of interest are identified. Workflow guidance options become available once data are

provided.

Once mzML and Sample JSON files are uploaded, the application will automatically check to
see if there are valid pairs of mzML and Sample JSON files. A successful upload will give a
screen similar to Figure 4. If multiple files are loaded, only files with verified matches will
be included in the table and available for further processing.

Figure 4. The data import page after data files have been loaded.

Step 2 - Process Data

After files have been loaded and matched, a button will appear on the “Data Import”
window that is labeled “Process Data”. Click the “Process Data” button and it will
sequentially process each mzML file. This can take up to 5 minutes per raw file depending
on the number of compounds per file, so a large number of files may take a long time to
process. Progress indicators are provided. Once complete, the text under “QC Data Import
Status” will read: “Data processing complete.”

If a raw file does not have a valid Sample JSON, the files can still be processed, but the
invalid rows will be excluded.

Step 3 - Review QC Results

Once processed, the QC results can be reviewed by selecing “Quality Review” in the left
menu or clicking the “Quality Review” button that appears below the “Process Data” button.

The top table, which is the only visible table when starting a new review, shows the raw
files that have been processed and the respective quality control check results
(“PassCheck”). If all compounds in the raw file passed all QC checks, the PassCheck result
will be true. If any compound in the raw file failed any of the QC checks, the PassCheck
result will be false.

To review the compounds within a single raw file, select the row of the raw file you want to
review in the table labeled 1) Click a row to select an mzML file. This will display a second
table of all compounds within the selected raw file. The PassCheck result for each
compound is displayed in this table. If all QC checks for each compound in the raw file
passed all QC checks, the PassCheck result will be true for that compound. If a compound in
the raw file failed any of the QC checks, the PassCheck result will be false for that
compound.

To review the individual QC checks (described in the Technical Details>Quality Control
Evaluation section), select a row for the peak to review in the table labeled 2) Click a row to
see metrics for that peak. This will display boxes to the right containing all QC checks for
that compound. Expand a specific QC check by clicking on the box header to display the
results of the QC check as a table. An example view of the quality control review page is

shown in Figure 5. A note below the two tables on the left will indicate whether any QC
checks failed.

Figure 5. Screenshot of the quality review page with both an mzML file and a peak object
selected.

Step 4 - Export Data

Once data are processed, all data can be exported (regardless of quality review status) by
selecting “Export Data” in the left menu. Additional options may be added in the future to
refine the export process such as selecting only peaks and files that pass all defined quality
checks.

Clicking the button labeled “Export all data”, will write the peak JSON files and download
them in a single .zip file. This file can be unzipped and the peak JSONs can be directly
incorporated into the DIMSpec database using the import routine described in the
Importing Data section.

Step 5 - Closing Down

When finished using the application, typing the escape key at the R console is the simplest
way to stop the server and exit the application. If using RStudio there is a “stop sign” button
at the top right of the console pane that will also stop it. When finished completely with the
project, users also need to shut down the API server.

• Loading the entire project from the compliance script (i.e. MSMatch was launched
using start_app("msmatch")) provides additional actions and includes a live
database connection with the ability to read data into tables and preserve them for
further analysis. Use the function close_up_shop() with the argument

back_up_connected_tbls set to TRUE to preserve these, or the default FALSE to
simply close all connections including the API server).

• If launching the app directly and using the default settings there will be a session
object named plumber_service connected to that server. To stop it, use the
api_stop function from the console or stop the service directly using
plumber_service\$kill(); it will also generally stop when the calling R process
closes (e.g. when RStudio is closed), but it is highly recommended to stop it
manually to prevent hanging connections.

• After closing all connections, a hanging connection may be indicated by the presence
of “-shm” and “-wal” files in the project directory. Flushing these hanging
connections is not required but is recommended.

– If launching MSMatch with the compliance script, run [close_up_shop()]
again.

– Otherwise flush those connections by directly connecting and disconnecting
with the DBI package:

 con <- DBI::dbConnect(
 RSQLite()::SQLite,
 "nist_pfas_nta_dev.sqlite")

 DBI::dbDisconnect(con)
 rm(con)

Feature requests, suggestions, and bug reports are most conveniently submitted as issues
via GitLab but may also be submitted by contacting the authors of this ROA. New
functionality suggestions are encouraged as the project tooling develops. Likewise, if the
functionality demonstrated here is of interest to projects outside of PFAS, this is only one
example implementation of the underlying technology stack (i.e. DIMSpec); contact the
authors to see if your mass spectrometry data would be amenable to that framework as
other implementation suggestions are encouraged and a larger goal of the project to
cohesively manage mass spectrometry data for non-targeted analysis within the Chemical
Sciences Division.

This concludes the User Guide for the DIMSpec Quality Control (MSQC) web application.
The following section contains technical details about the implementation and user
customization of this digital assistant.

Technical Details

Implementation and environment details for the MSQC application largely follow those for
DIMSpec. See the sections on System Requirements, Environment Resolution, Shiny
Applications, Plumber for the API implementation which is required for this application,
and Python Integration for chemometrics support.

Technical details in this section will describe only the MSQC application found in the
inst/apps/dimspec-qc directory and, unless otherwise noted, all files referred to hereafter
refer to that directory.

JSON Schema

There are two types of JavaScript Object Notation (JSON) files used for the data import and
quality control process:

1. Sample JSON: these files (conventionally labeled “[mzmlfilename]_mzml_sample
.JSON”) are exported from the Non-Targeted Analysis – Method Reporting Tool
(NTA-MRT) and contain sample, method, and compound information related to a
paired mzML file. A visual representation of the Sample JSON schema is shown in
Appendix A.

2. Peak JSON: these files are exported from the MSQC application (conventionally
labeled “[mzmlfilename]_mzml_cmpd[compoundreferencenumber].JSON”) and
contain sample, method, compound information with mass spectral data related to
the specified compound. The Peak JSON schema is shown in Appendix B.

Quality Control Evaluation

Upon running the quality control data processing there are seven individual checks that are
performed. Within the MSQC app, the different checks are represented by parameter
names. The QC checks with their named parameters are as follows. Most settings for these
checks may be changed in the QC Settings page.

• measurederror: is the reported precursor ion m/z value within the reported
instrumental error of the calculated precursor ion m/z of the designated compound?
This calculation uses the instrument relative mass error contained in Sample JSON
file, the absolute minimum mass error (default: 0.01 Da - see the setting labeled
Minimum m/z error of instrument), and the monoisotopic mass of the designated
compound in the DIMSpec database.

• ms1_isotopepattern: does the MS1 isotopic pattern of the submitted data match the
calculated isotopic pattern with a match score above an expected value? This
calculation uses the Minimum MS1 isotopic match score (default: 0.5 - see the
setting labeled Minimum MS1 isotopic match score), the lower MS1 window value
(default: 1 - see the setting labeled Lower MS1 window value), and the upper MS1
window value (default: 4 - see the setting labeled Upper MS1 window value).

• ms1precursor_detected: is the reported precursor ion m/z value present in the MS1
mass spectrum of the submitted data? This calculation uses the instrument relative
mass error contained in Sample JSON file and the absolute minimum mass error
(default: 0.01 Da - see the setting labeled Minimum m/z error of instrument).

• annfragments_detected: are the reported annotated fragment ion m/z values present
in the MS1 mass spectrum of the submitted data? This calculation uses the
instrument relative mass error and annotated fragment ion list contained in Sample
JSON file and the absolute minimum mass error (default: 0.01 Da - see the setting
labeled Minimum m/z error of instrument).

• annfragment_accuracy: are the reported annotated fragment ion m/z values value
within the reported instrumental error of the fragment ion m/z of the designated
fragment, calculated from the elemental formula? This calculation uses the
instrument relative mass error and fragment elemental formulas contained in the
Sample JSON file and the absolute minimum mass error (default: 0.01 Da - see the
setting labeled Minimum m/z error of instrument).

• annfragments_subset: are the reported annotated fragment elemental formulas a
subset of the elemental formula of the designated compound? For example, is the
fragment “C3F7” a subset of the designated compound elemental formula
“C8F15O2H”? In this example, the result would be true. This calculation uses the
elemental formula contained in the Sample JSON file and the elemental formula of
the designated compound in the DIMSpec database.

• annfragment_elementalmatch: if there is a SMILES structure provided for an
annotated fragment, does the elemental formula of the SMILES structure match the
elemental formula provided for the same annotated fragment? This calculation uses
the SMILES structure and the elemental formula contained in the Sample JSON file.

• optimized_ums_parameters: this is not a quality check, but occurs during the same
data processing step. Optimized settings for the uncertainty mass spectrum of the
MS1 and MS2 data is calculated using the function optimal_ums for import into the
DIMSpec database.

At any time necessary, these settings may be changed on the QC Settings page and QC
checks run again by clicking “Process Data”.

Application Settings

Many global application settings are customizable by modifying the global.R file. Changes
to those listed here should not cause issues, but other settings in this file may result in
instability. Anywhere a TRUE or FALSE value is indicated should only be TRUE or FALSE. The
most germane user settings include:

Future Development

Both the R/Shiny and python code bases are fully extensible for future functionality needs,
as is the underlying database infrastructure for custom tables and views. Future
development may include deployment of and to a Shiny server to serve this as a hosted

web application, extending the python code to analyze data of various formats from
different instruments, and adding analysis features and functionality (e.g. high resolution
plot generation and download or supporting the full workflow from instrument through
import and to report generation) requested by stakeholders.

This concludes the technical details section for the DIMSpec Quality Control (MSQC)
application.

Conclusions

The DIMSpec Quality Control application provides a new way to make NTA tools developed
at NIST on top of the Database Infrastructure for Mass Spectrometry accessible to both
internal and external stakeholders. It is the first demonstration of tools that can be built on
top of databases conforming to the DIMSpec project which can be repurposed for any class
of chemicals or project of interest.

Appendices

Example Sample JSON Schema

The javascript object notation (JSON) schema describing samples is minimal for flexibility
and extensibility as it is produced by visual basic for applications (VBA) scripts in the Non
Targeted Analysis Method Reporting Tool (NTA-MRT), and is not fully defined in a machine
readability sense allowing for automatic schema verification.

This definition is intended only to facilitate transfer and assessment of data through the
NTA-MRT into the DIMSpec schema, and sufficient for that purpose.

Any number of schema harmonization efforts could connect DIMSpec with larger schema
development efforts within the community to increase machine readability and
transferability in line with the FAIR principles. This is an area where the DIMSpec project
can be improved and schema mapping efforts can serve to connect data with larger
projects outside of this project. NIST welcomes collaborative efforts to harmonize schema
with larger efforts; reach out with an email to the PFAS program at NIST to start a
collaboration.

{
 "sample": {
 "name",
 "description",
 "sample_class",
 "data_generator",
 "source"
 },
 "chromatography": {
 "ctype",
 "cvendor",

mailto:pfas@nist.gov

 "cmodel",
 "ssolvent",
 "mp1solvent",
 "mp1add",
 "m2solvent",
 "mp2add",
 "mp3solvent",
 "mp3add",
 "mp4solvent",
 "mp4add",
 "gcolvendor",
 "gcolname",
 "gcolchemistry",
 "gcolid",
 "gcollen",
 "gcoldp",
 "colvendor",
 "colname",
 "colchemistry",
 "colid",
 "collen",
 "coldp",
 "source"
 },
 "massspectrometry": {
 "msvendor",
 "msmodel",
 "ionization",
 "polarity",
 "voltage",
 "vunits",
 "massanalyzer1",
 "massanalyzer2",
 "fragmode",
 "ce_value",
 "ce_desc",
 "ce_units",
 "ms2exp",
 "isowidth",
 "msaccuracy",
 "ms1resolution",
 "ms2resolution",
 "source"
 },
 "qcmethod": [
 {
 "name",
 "value",
 "source":
 }
],
 "peaks": {
 "peak": {
 "count":,
 "name",

 "identifier",
 "ionstate",
 "mz",
 "rt",
 "peak_starttime",
 "peak_endtime",
 "confidence"
 }
 },
 "annotation": {
 "compound": {
 "name",
 "fragment": {
 "fragment_mz",
 "fragment_formula",
 "fragment_SMILES",
 "fragment_radical",
 "fragment_citation"
 }
 }
 }
}

Example Peak JSON Schema Extension

The javascript object notation (JSON) schema describing peak data and quality control
metrics is a minimal extension of the sample schema and is produced by the MSQC tool and
associated R functions used as part of the QC evaluation process. It is not fully defined in a
machine readability sense allowing for automatic schema verification.

MSQC uses this extension to split the provided sample schema by peak, maintaining the
sample metadata, attach the “msdata” element containing anlytical results, and attach
resulting QC data. This results in one file per peak for import into the DIMSpec schema, and
is sufficient for that purpose.

Any number of future schema harmonization efforts could connect DIMSpec with larger
schema development efforts within the community to increase machine reading and
transferability in line with the FAIR principles. This is an area where the DIMSpec project
can be improved and schema mapping efforts can serve to connect data with larger
projects outside of this project. NIST welcomes collaborative efforts to harmonize schema
with larger efforts; reach out with an email to the PFAS program at NIST to start a
collaboration.

{
 ...,
 "msdata": [
 {
 "scantime",
 "ms_n",
 "baseion",
 "base_int",

mailto:pfas@nist.gov

 "measured_mz",
 "measured_intensity"
 }
],
 "qc": [
 [
 {
 "parameter",
 ...,
 "value",
 "limit",
 "result"
 }
]
]
}

Mass Spectral Match (MSMatch)

Introduction

One goal of the Data Infrastructure for Mass Spectrometry (DIMSpec) project is to provide
a database that can be easily built to support individual projects within the Chemical
Sciences Division to manage data coherently and accelerate analyte identification,
screening, and annotation processes for non-targeted analysis projects. Toward that end,
the Mass Spectral Match for Non-Targeted Analysis (MSMatch) application was built to
accelerate non-targeted analysis projects by searching experiment result data in mzML
format for matches against a curated mass spectral library of compounds and annotated
fragments. MSMatch is a web application built using the Shiny package in R and installs
alongside DIMSpec and is one example of a tool that can built on top of the DIMSpec toolkit.
Databases built and managed with DIMSpec are SQLite files used within a distributed R
Project. Scripts for automated setup are included. For this initial release, DIMSpec is
distributed with data populated for per- and polyfluorinated alkyl substances (PFAS); that
effort has been primarily supported by the Department of Defense Strategic Environmental
Research and Development Program (DOD-SERDP), project number ER20-1056.

This section serves as a user guide for using the MSMatch application.

Set Up Instructions

The MSMatch application installs alongside DIMSpec. If there is continued (or expanded)
interest, the project could be turned into an R package installable directly from GitHub with
additional development or this tool can be deployed to a shiny server to avoid the need for
launching or maintaining it locally. For now, this application is distributed for
demonstration and evaluation with an implementation of NIST DIMSpec containing high
resolution accurate mass spectrometry data for per- and polyfluorinated alkyl substances
(PFAS). The R project can be opened in RStudiovi which may be downloaded and installed
free of charge if not already installed. Initial set up does require an internet connection to
install dependencies; on a system which does not contain any software components this
can take a considerable amount of time.

Refer to the System Requirements section for installation details.

Input File Format Requirements

To use MSMatch, raw data files produced by a mass spectrometer must be converted into
mzML format (Deutsch 2010) using Proteowizard’s msConvert software (Chambers et al.
2012). There are specific parameters that must be used during conversion.

Filter: Threshold peak filter
Threshold type: absolute
Orientation: most intense

https://www.psidev.info/mzML
https://serdp-estcp.org/
https://www.serdp-estcp.org/projects/details/a0bb4198-02cd-44b9-9e73-9ef916e7f7e0/er20-1056-project-overview
https://www.rstudio.com/
https://proteowizard.sourceforge.io/

Value: 1
Filter: Peak picking
Algorithm: vendor
MS levels: 1-2

A more detailed user guide for converting the files is provided as a vignette.

Launching MSMatch

Launch this tool similarly to other “shiny”-based tools provided as part of DIMSpec. In brief,
this can be done from a terminal or the R console, though the preferred method is to use
RStudio (RStudio Team 2020). The following commands are typical given an existing
installation of R or RStudio and should always be run from the project directory. The shiny
package (Chang et al. 2021) and other necessary R packages will be installed if it not
already available by running the script at R/compliance.R, but shiny is the only package
required to start the application. When first run, it may take a moment to install necessary
dependencies and launch the application programming interface (API) server.

Terminalvii

R.exe “shiny::runApp(‘inst/apps/msmatch’)”

R console

shiny::runApp(‘inst/apps/msmatch’)

RStudio

Open the “.Rproj” project file in RStudio, navigate to the “inst/apps/msmatch”
directory, open one of the “global.R,” “server.R,” or “ui.R” files, and click the “Run
App” button. Files open in an RStudio project will remain open by default when
RStudio is closed, allowing users to quickly relaunch by simply loading the
project. For best performance, ensure “Run External” is selected from the menu
“carrot” on the right to launch the application in your system’s default web
browser. This application has been tested on Chrome, Edge, and Firefox.

Alternatively, once the compliance script has been executed MSMatch can be launched
using start_app("msmatch").

Once launched the API server will remain active until stopped, allowing users to freely
launch, close, and relaunch any shiny apps dependent upon it much more quickly. The
application is fluid and will dynamically resize to fit the dimensions of a browser window.
By default, the server does not stop when the browser is closed. This means that, once
started, it is available by navigating a web browser back to the URL where it launched until
the server is shut down.

If anything is needed from the user, interactive feedback will occur in the console from
which it was launched. Install any packages required if prompted by the application. Once

the package environment requirements have been satisfied and the server has spun up,
which may take a moment, the tool will launch (Figure 1) either in the RStudio viewer or
the browser.

Using MSMatch

Every effort has been made to make MSMatch as intuitive for users as possible. Set up may
require a bit of effort on certain systems, but once the application launches it should be
straightforward; please contact the authors directly or email pfas@nist.gov for support, or
with any questions or suggestions.

Hints in the form of tooltips are provided throughout; hover over question mark icons or
controls to see them. These can be toggled on and off at any time using the “Show Tooltips”
toggle button at the bottom left of the application window (see Figure 1 inset at bottom
right). If enabled, advanced search settings can be similarly toggled on and off for the
session (see Application Settings for instructions on how to set default accessibility and
settings for tooltips and advanced settings). The “hamburger” (≡) icon at the top left of the
screen will collapse the left-hand navigation panel to provide more horizontal room on
smaller screens, though the application will rearrange itself when screens are smaller than
a minimum width.

Figure 1. The home page for the MSMatch web application contains basic information about
the application and can be tailored easily for each use case for reuse.

mailto:pfas@nist.gov

Click the “Click Here to Get Started” button to begin. This will activate the “Data Input”
page. Example data files are provided in the project directory or upon request
(“example/PFAC30PAR_PFCA2.mzML” and “example/example_peaklist.csv”).

Figure 2. The data input page of MSMatch where data files, experiment parameters, and
features of interest are identified. Workflow guidance options become available once data are

provided.

All input values are validated against expectations and will flag the user if invalid values are
used.

Step 1. Load an mzML Data File

MSMatch accepts files in the mzML format, see the previous section Input file format
requirements for more details. Either click the “Load” button to select a local file or click
and drag one from your file system to that widget. Only .mzML files are accepted using this
release. Set instrument parameters to match those used in the experiment using the
controls provided.

Step 2. Identify Features of Interest

Two methods (Figure 3) are supported to identify features of interest by mass-to-charge
ratio and retention time properties. Either use case is fully supported. Users may:

1. import a file (either .csv, .xls, or .xlsx, though workbooks should have relevant data
in the first worksheet) and identify which columns contain the correct information
(Figure 3, left).

– Click “Import” and select a file of interest from your local computer or drag
and drop a file to this input.

– Use this method if you have a file containing features of interest from other
procedures or software outputs to quickly import many feature properties.

– Select a column that corresponds to each property.
– To append to the current list, keep the checkbox checked. To overwrite,

uncheck this box.
– Click “Load Parameters” to validate and add parameters or “Cancel” to abort

this operation.
– Repeat until all files are imported. or

2. click the “Add” button and enter search parameters one at a time (Figure 3, left);
repeat this process to add more.

– Add numeric values for all items.
– Click “Save Parameters” to validate and add or “Cancel” to abort this

operation
• Users receive feedback on the form if values are left blank or if they do not meet

expectations (e.g. centroid is after peak start and before peak end).
• Values should all be numeric in nature.
• This list may be edited after import (Figure 4).

Data are ready to be processed once features of interest are added. Selecting any row in the
resulting table makes two additional functions available (Figure 4, right). With a row
selected, click “Remove” to delete it or “Edit” to bring up the same form as above (Figure 3,
right), change the values, and click “Save Parameters.” All records remaining in the feature
of interest list will be available to search widgets on subsequent pages.

Figure 3. Dialogs to identify features of interest by upload (left) or manually by clicking the
Add button (right).

Figure 4. Manage the feature identification list (left) interactively by adding, editing, or
removing features as needed (right) by selecting a row from the table and clicking the

appropriate button.

Step 3. Generate the Search Object

Click the “Process Data” button (Figure 5) to filter and recast data in the .mzML file
according to defined feature properties. (In further screenshots the manually added row
[m/z 327.4586] has been removed. This will unlock mass spectral matching actions; click
one of the buttons or navigate to the desired page using the navigation panel on the left.

Figure 5. Click “Process Data” to validate experiment data and choose one of the options that
appear or navigate to the desired page using the left-hand navigation menu.

Step 4. Explore Results

Algorithmic matching of provided mass spectral data for features of interest are matched
against data stored in the attached database. Matching algorithms are described in detail in
Compound and Fragment Match Algorithms. In brief, data meeting properties of a feature
of interest are extracted from the provided .mzML file given the reported mass accuracy
settings of the experiment and mass-to-charge ratios for known compounds and fragments
are searched within an uncertainty boundary range and returned from the database.
Results are then stored in the application server and displayed to the user.

Match Compounds

Click the “Compound Match” button from the previous page or select “Compound Match”
from the left-hand navigation menu to match features of interest from the mzML file to
known compounds in the database.

Figure 6. Compound matching options. Select a feature of interest and search type, then click
the ‘Search’ button.

Select a feature of interest from the drop-down box and click the “Search” button.

In most cases the “Precursor Search” option should remain selected; the other option is
“All” which takes a considerable amount of time and may yield poor matches. The “Use
Optimized Search Parameters” checkbox will utilize a set of predefined properties for
known compounds to accelerate the search; uncheck this box to perform a wider search.

Narrative results are provided regarding the top match and the match currently being
viewed, including a method summary for how the reference was measured. The spectral
comparison is visualized in a “butterfly plot” showing measurements in black and the
comparison (database) spectrum in red; toggle the different fragmentation levels (e.g. MS1
vs MS2) to view those independently (Figure 7).

The table at the right displays compound match identities and their match scores. Click the
green plus icon to expand any given row of the table or click a different row to examine that
match and update the plot and method narrative (Figure 8). This table may be downloaded
using the buttons at the bottom left of the table.

Figure 7. Results of a compound match for the selected feature of interest. (Inset: Download
results using the buttons at the bottom left of the match table.)

Figure 8. Results change in real time when different rows are selected from the table,
updating the narrative, butterfly plot, and method narrative (compare with Figure 6).

Evaluation of match score uncertainty is also provided. Click the “Estimate Match Score
Uncertainty” button below the butterfly plot (Figure 7) to evaluate the spread in match
scores for the currently selected match (Figure 9). Results from a bootstrapped version of
the match algorithm are displayed as boxplots for both forward and reverse matches.
Toggle the different fragmentation levels (e.g. MS1 vs MS2) to view each. Change the
number of bootstrap iterations to use and click “Calculate Uncertainty” to run the
estimation again. Click the “Close” button to return to the compound match screen and
change the match being evaluated. The calculation of mass spectral uncertainty and
estimation of the distribution of the match scores is described in Place, Benjamin J.
(2021a).

Figure 9. Estimation of match score uncertainty for any selected match candidate.

The match result table (Figures 7 and 8) offers several options.

• Sort using the column headers (results are by default ordered by MS1 score and
MS2 score, with ties being decided by reverse match scores and the number of
annotated fragments).

• Download the resulting match table by either copying it to the clipboard (“Copy”) or
downloading in either CSV or XLS file formats using the buttons at the bottom left of
the table (see Figure 6).

• Select any row in the table to update the narratives and plots or evaluate match
score uncertainty for that match.

If no compound matches are found, users are flagged to that effect. Proceed to Match
Fragments using the navigation menu to identify fragments matching known annotations.

Match Fragments

Click the “Fragment Match” button from the data input page (Figure 5) or select “Fragment
Match” from the left-hand navigation menu to match analytical fragments within features
of interest from the .mzML file with previously annotated fragments in the database.

Select a feature of interest from the drop-down box just as with compounds (features are
defined in Step 2: Identify Features of Interest) and click the “Search” button (Figure 10).

Figure 10. Fragment matching options. Select a feature of interest and click the ‘Search’
button.

Fragments measured within the feature of interest will be matched against database
fragments with known annotations. Complicated spectra may take a moment but generally
completes within 30 seconds yielding a variety of results to indicate possible compound
identity. Results are presented as an annotated mass spectral uncertainty plot (Figure 11
left) and additional information about measured spectra are provided in an expanding
table (Figure 11 right).

Figure 11. Graphical display of fragment annotations on an uncertainty mass spectral plot
and the measured data provided to MSMatch.

Matched fragment annotations and associated metadata are provided below this output
(Figure 12). Match records are located in the expandable table to the left. As matches may
have structural annotation or not, these are separated to indicate confidence and
annotations with structural notation are displayed at the top. Select a row in the table (the
top record is selected by default) to update the following displays.

• A human readable measurement narrative about the known fragment.

• If structural notation is present a molecular model is displayed (requires rdkit to be
active in the API server)

• Compounds and peaks within which this fragment has been previously annotated
appear in the table to the right. Select the tab to switch between compounds and
peaks.

Figure 12. Results from matching user provided data to annotated fragments with associated
metadata. Selecting a row in the left-hand table will update data to the right in real time.
Inset A: click a button to save that table’s results. Inset B: an example of peak information

available.

Two options are available for more contextual
information regarding compounds and peaks.

• Click More Compound Information to
list other known or generated aliases for a
compound and provides links to those
resources if available. These aliases have
either been collated from existing
locations or, in the case of most machine-
readable identifiers, generated using
rdkit.

Figure 13. Additional information available for compounds.

• Click More Peak Information to
provide a human readable narrative
regarding measurement methods and
sample information provided as part of
the database accession process.
Narratives are constructed directly from
the underlying linked data tables by the
database and stored as a database view.

Figure 14. Additional information available for peaks.

Step 5. Closing Down

When finished using the application, typing the escape key at the R console is the simplest
way to stop the server and exit the application. If using RStudio there is a “stop sign” button
at the top right of the console pane that will also stop it. When finished completely with the
project, users also need to shut down the API server.

• Loading the entire project from the compliance script (i.e. MSMatch was launched
using start_app("msmatch")) provides additional actions and includes a live
database connection with the ability to read data into tables and preserve them for
further analysis. Use the function close_up_shop() with the argument
back_up_connected_tbls set to TRUE to preserve these, or the default FALSE to
simply close all connections including the API server).

• If launching the app directly and using the default settings there will be a session
object named plumber_service connected to that server. To stop it, use the
api_stop function from the console or stop the service directly using
plumber_service\$kill(); it will also generally stop when the calling R process
closes (e.g. when RStudio is closed), but it is highly recommended to stop it
manually to prevent hanging connections.

• After closing all connections, a hanging connection may be indicated by the presence
of “-shm” and “-wal” files in the project directory. Flushing these hanging
connections is not required but is recommended.

– If launching MSMatch with the compliance script, run close_up_shop()
again.

– Otherwise flush those connections by directly connecting and disconnecting
with the DBI package:

 con <- DBI::dbConnect(
 RSQLite()::SQLite,
 "nist_pfas_nta_dev.sqlite")

 DBI::dbDisconnect(con)
 rm(con)

Feature requests, suggestions, and bug reports are most conveniently submitted as issues
via GitHub but may also be submitted by contacting the authors of this ROA. New
functionality suggestions are encouraged as the project tooling develops. Likewise, if the
functionality demonstrated here is of interest to projects outside of PFAS, this is only one
example implementation of the underlying technology stack (i.e. DIMSpec); contact the
authors to see if your mass spectrometry data would be amenable to that framework as
other implementation suggestions are encouraged and a larger goal of the project to
cohesively manage mass spectrometry data for non-targeted analysis within the Chemical
Sciences Division.

This concludes the User Guide for the Mass Spectral Match (MSMatch) web application. The
following section contains technical details about the implementation and user
customization of this digital assistant.

Technical Details

Implementation and environment details for the MSMatch application largely follow those
for DIMSpec. See the sections on System Requirements, Environment Resolution, Shiny
Applications, Plumber for the API implementation which is required for this application,
and Python Integration for chemometrics support.

Technical details in this section will describe only the MSMatch application found in the
inst/apps/msmatch directory and, unless otherwise noted, all files referred to hereafter
refer to that directory.

Mass Spectral Search Object

In order to use the functions related to the database searching, library matching, and
fragment matching, a mass spectral search object must be generated. A mass spectral search
object is a nested list in the R environment that contains the following:

• Peak search parameters input in Step 1, including instrument performance
parameters, in a search_df dataframe

• MS1 and MS2 (if available) mass spectra peak tables, nested lists with names ms1_pt
and ms2_pt respectively. Each peak table contains:

– peaktable_mass: a dataframe of m/z values with rows representing binned
m/z values and columns representing individual scans

– peaktable_int: a dataframe of intensity values with the same shape and
organization as the peaktable_mass dataframe

– EIC: dataframe containing paired time and int (intensity) values
corresponding to the MS1 extracted ion chromatogram (EIC) of the precursor
ion stated in the peak search parameters

– ms1scans: integer vector that indicates the scan number of the MS2 scans

– ms2scans: integer vector that indicates the scan number of the MS2 scans

The Mass Spectral Search Object is converted into uncertainty mass spectra (MS1 and MS2,
if available) through the get_ums function for subsequent analysis.

Compound and Fragment Match Algorithms

All relevant functions for compound and fragment match algorithms are in the
R/spectral_analysis directory. Currently, the compound search tool of MSMatch can
search the database using the precursor ion m/z of the unknown compound
(search_precursor function) to reduce the processing time and compare only reference
mass spectra with the same (defined below) precursor ion m/z or compare the mass
spectra of the unknown compound to all compounds in the database (search_all
function). The search_precursor function first identifies all peaks that have precursor ion
m/z values that are within a range, as dependent on the type of MS2 experiment used:

Data-Dependent Acquisition (DDA, TopN), reference precursor ion m/z range:

�𝑚𝑚𝑝𝑝 − max (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑚𝑚𝑚𝑚𝑚𝑚. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒), 𝑚𝑚𝑝𝑝 + max (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑚𝑚𝑚𝑚𝑚𝑚. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)�

Sequential Windows of All Theoretical Masses (SWATH, SONAR), range:

�𝑚𝑚𝑝𝑝 −
1
2

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑚𝑚𝑝𝑝 +
1
2

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�

Data-Independent Acquisition (DIA, AIF), range:

(0, ∞)

Where mp is the precursor ion m/z of the unknown compound, error is the instrument
relative error (in ppm) for DDA and the width of the window in SWATH, and min.error is
the instrument absolute minimum error (in Da). For DIA, the range is all possible positive

masses so that, functionally, the search_precursor function is no different than the
search_all function.

To determine the match score between the unknown compound mass spectra (MS1 and
MS2) and the reference mass spectra, the dot product of the mean mass spectra is
calculated using the compare_ms function, which uses the respective mass errors and
minimum mass errors of the unknown mass spectra and reference mass spectra. To
determine the uncertainty distribution of the match score, the bootstrap_compare_ms
function is used. The application of this function is described in Place, Benjamin J. (2021a).

For the fragment search tool, the function get_annotated_fragments is used, where all
m/z values in the MS2 mass spectrum of the unknown compound are searched against all
annotated fragments in the norm_fragments view using the instrument relative mass error
and absolute minimum mass error as boundary conditions. Annotated fragments are
fragment m/z values that have elemental formulas assigned; SMILES structural notation
can also be assigned but is not required for annotation.

Application Settings

Many global application settings are customizable by modifying the global.R file within
the application directory. Changes to those listed here should not cause issues, but other
settings in this file may result in instability. Anywhere a TRUE or FALSE value is indicated
should only be TRUE or FALSE. The most germane user settings include:

Table 4. Example application settings in the global.R file.

Setting Default Value Description
APP_TITLE “Mass Spectral Match

for PFAS”
Set the application title which will appear
in the browser tab when running.

default_title APP_TITLE The application name that will display
inside the page. Overrides the default of
APP_TITLE if desired.

app_ns paste0(“app_”,
app_name)

The namespace to direct logging
messages.

dev FALSE Whether to launch the application in
development mode, which will allow for
interactive interrogation of application
state by unlocking a button, provide the
opportunity to pre-load data for testing,
and display most hidden elements for
inspection.

enable_adv_use TRUE Whether to launch the application with a
toggle to display advanced controls
available to the user.

advanced_use FALSE Whether to launch the application with
advanced controls visible by default.

enable_more_help TRUE Whether to launch the application with a
toggle to display tooltips to the user.

advanced_use FALSE Whether to launch the application with
tooltips by default.

tooltip_text “www/tooltips.csv” A data source for populating tooltips. This
should point to a readable file (e.g.
www/tooltips.csv) that is coerced to a
named vector.

toy_data FALSE Whether to launch the application with
“toy” data for testing purposes. This loads
data from “src_toy_data” and
“src_toy_parameters” during application
spin up so the tester does not have to
manually upload files or add data.

src_toy_data “toy_data.RDS” Name of the RDS file housing “toy” data
from a previously processed mzML file.

src_toy_parameters “toy_parameters.RDS” Name of the RDS file housing “toy” data
describing features of interest to use for
testing.

need_files Character vector File paths for files containing application
functions.

app_settings Named list Properties used to populate controls
within the application, by name (e.g. min,
max, value, etc.).

jscode Text/HTML/Javascript Custom javascript functions which either
execute automatically or by calling the
function server side.

file_MB_limit Numeric The maximum size in megabytes for a
single uploaded file. Shiny’s built-in
default is 5 MB.

Future Development

Both the R/Shiny and python code bases are fully extensible for future functionality needs,
as is the underlying database infrastructure for custom tables and views. Future
development may include deployment of and to a Shiny server to serve this as a hosted
web application, extending the python code to analyze data of various formats from
different instruments, and adding analysis features and functionality (e.g. high resolution

plot generation and download or supporting the full workflow from instrument through
import and to report generation) requested by stakeholders.

Conclusions

The Mass Spectral Match for Non-Targeted Analysis application provides a new way to
make NTA tools developed at NIST accessible to both internal and external stakeholders
using the Database Infrastructure for Mass Spectrometry project toolkit. It is the first
demonstration of tools that can be built on top of databases conforming to the DIMSpec
project, which can be repurposed for any class of chemicals or project of interest using
mass spectrometry data.

References
Adusumilli, Ravali and Mallick, Parag. 2017. “Data Conversion with ProteoWizard
msConvert.” Methods in Molecular Biology (Clifton, N.J.) 1550: 339–68.
https://doi.org/10.1007/978-1-4939-6747-6_23.

Allaire, JJ, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, Hadley
Wickham, Joe Cheng, Winston Chang, and Richard Iannone. 2022. Rmarkdown: Dynamic
Documents for r. https://CRAN.R-project.org/package=rmarkdown.

Bache, Stefan Milton, and Hadley Wickham. 2022. Magrittr: A Forward-Pipe Operator for r.
https://CRAN.R-project.org/package=magrittr.

Barthelme, Simon. 2022. Imager: Image Processing Library Based on CImg. https://CRAN.R-
project.org/package=imager.

Chambers, Matthew C., Brendan Maclean, Robert Burke, Dario Amodei, Daniel L. Ruderman,
Steffen Neumann, Laurent Gatto, et al. 2012. “A Cross-Platform Toolkit for Mass
Spectrometry and Proteomics.” Nature Biotechnology 30 (10): 918–20.
https://doi.org/10.1038/nbt.2377.

Chang, Winston, Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie, Jeff Allen,
Jonathan McPherson, Alan Dipert, and Barbara Borges. 2021. Shiny: Web Application
Framework for r. https://shiny.rstudio.com/.

Deutsch, Eric W. 2010. “Mass Spectrometer Output File Format mzML.” In Proteome
Bioinformatics, edited by Simon J. Hubbard and Andrew R. Jones, 319–31. Methods in
Molecular Biology™. Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-60761-
444-9_22.

Gagolewski, Marek. 2021. “Stringi: Fast and Portable Character String Processing in r.”
Journal of Statistical Software.

Gagolewski, Marek, Bartek Tartanus, others; Unicode, Inc., et al. 2021. Stringi: Character
String Processing Facilities. https://CRAN.R-project.org/package=stringi.

Grolemund, Garrett, and Hadley Wickham. 2011. “Dates and Times Made Easy with
lubridate.” Journal of Statistical Software 40 (3): 1–25. https://www.jstatsoft.org/v40/i03/.

Henry, Lionel, and Hadley Wickham. 2020. Purrr: Functional Programming Tools.
https://CRAN.R-project.org/package=purrr.

Hester, Jim, and Jennifer Bryan. 2022. Glue: Interpreted String Literals. https://CRAN.R-
project.org/package=glue.

Müller, Kirill. 2020. Here: A Simpler Way to Find Your Files. https://CRAN.R-
project.org/package=here.

https://doi.org/10.1007/978-1-4939-6747-6_23
https://cran.r-project.org/package=rmarkdown
https://cran.r-project.org/package=magrittr
https://cran.r-project.org/package=imager
https://cran.r-project.org/package=imager
https://doi.org/10.1038/nbt.2377
https://shiny.rstudio.com/
https://doi.org/10.1007/978-1-60761-444-9_22
https://doi.org/10.1007/978-1-60761-444-9_22
https://cran.r-project.org/package=stringi
https://www.jstatsoft.org/v40/i03/
https://cran.r-project.org/package=purrr
https://cran.r-project.org/package=glue
https://cran.r-project.org/package=glue
https://cran.r-project.org/package=here
https://cran.r-project.org/package=here

Müller, Kirill, and Hadley Wickham. 2021. Tibble: Simple Data Frames. https://CRAN.R-
project.org/package=tibble.

Müller, Kirill, Hadley Wickham, David A. James, and Seth Falcon. 2021. RSQLite: SQLite
Interface for r. https://CRAN.R-project.org/package=RSQLite.

Ooms, Jeroen. 2014. “The Jsonlite Package: A Practical and Consistent Mapping Between
JSON Data and r Objects.” arXiv:1403.2805 [Stat.CO]. https://arxiv.org/abs/1403.2805.

———. 2022. Jsonlite: A Simple and Robust JSON Parser and Generator for r.
https://CRAN.R-project.org/package=jsonlite.

Place, Benjamin J. 2021a. “Development of a Data Analysis Tool to Determine the
Measurement Variability of Consensus Mass Spectra.” Journal of the American Society for
Mass Spectrometry 32 (3): 707–15. https://doi.org/10.1021/jasms.0c00423.

———. 2021b. “Suspect List of Possible Per- and Polyfluoroalkyl Substances (PFAS).”
National Institute of Standards; Technology. https://doi.org/10.18434/MDS2-2387.

R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

R Special Interest Group on Databases (R-SIG-DB), Hadley Wickham, and Kirill Müller.
2021. DBI: R Database Interface. https://CRAN.R-project.org/package=DBI.

RDKit: Open-Soure Cheminformatics (version 2021.09.4). n.d.
https://doi.org/10.5281/zenodo.5835217.

RStudio Team. 2020. RStudio: Integrated Development Environment for r. Boston, MA:
RStudio, PBC. http://www.rstudio.com/.

Spinu, Vitalie, Garrett Grolemund, and Hadley Wickham. 2021. Lubridate: Make Dealing
with Dates a Little Easier. https://CRAN.R-project.org/package=lubridate.

Temple Lang, Duncan. 2021. XML: Tools for Parsing and Generating XML Within r and s-Plus.
http://www.omegahat.net/RSXML.

Urbanek, Simon. 2015. Base64enc: Tools for Base64 Encoding.
http://www.rforge.net/base64enc.

Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York. https://ggplot2.tidyverse.org.

———. 2019. Stringr: Simple, Consistent Wrappers for Common String Operations.
https://CRAN.R-project.org/package=stringr.

———. 2021a. Forcats: Tools for Working with Categorical Variables (Factors).
https://CRAN.R-project.org/package=forcats.

https://cran.r-project.org/package=tibble
https://cran.r-project.org/package=tibble
https://cran.r-project.org/package=RSQLite
https://arxiv.org/abs/1403.2805
https://cran.r-project.org/package=jsonlite
https://doi.org/10.1021/jasms.0c00423
https://doi.org/10.18434/MDS2-2387
https://www.r-project.org/
https://cran.r-project.org/package=DBI
https://doi.org/10.5281/zenodo.5835217
http://www.rstudio.com/
https://cran.r-project.org/package=lubridate
http://www.omegahat.net/RSXML
http://www.rforge.net/base64enc
https://ggplot2.tidyverse.org/
https://cran.r-project.org/package=stringr
https://cran.r-project.org/package=forcats

———. 2021b. Tidyverse: Easily Install and Load the Tidyverse. https://CRAN.R-
project.org/package=tidyverse.

Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino
McGowan, Romain François, Garrett Grolemund, et al. 2019. “Welcome to the tidyverse.”
Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.

Wickham, Hadley, Jennifer Bryan, and Malcolm Barrett. 2021. Usethis: Automate Package
and Project Setup. https://CRAN.R-project.org/package=usethis.

Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi,
Claus Wilke, Kara Woo, Hiroaki Yutani, and Dewey Dunnington. 2021. Ggplot2: Create
Elegant Data Visualisations Using the Grammar of Graphics. https://CRAN.R-
project.org/package=ggplot2.

Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller. 2021. Dplyr: A
Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.

Wickham, Hadley, and Maximilian Girlich. 2022. Tidyr: Tidy Messy Data. https://CRAN.R-
project.org/package=tidyr.

Wickham, Hadley, Maximilian Girlich, and Edgar Ruiz. 2021. Dbplyr: A Dplyr Back End for
Databases. https://CRAN.R-project.org/package=dbplyr.

Wickham, Hadley, Jim Hester, and Jennifer Bryan. 2022. Readr: Read Rectangular Text Data.
https://CRAN.R-project.org/package=readr.

Xie, Yihui. 2014. “Knitr: A Comprehensive Tool for Reproducible Research in R.” In
Implementing Reproducible Computational Research, edited by Victoria Stodden, Friedrich
Leisch, and Roger D. Peng. Chapman; Hall/CRC.
http://www.crcpress.com/product/isbn/9781466561595.

———. 2015. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman;
Hall/CRC. https://yihui.org/knitr/.

———. 2016. Bookdown: Authoring Books and Technical Documents with R Markdown. Boca
Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/bookdown.

———. 2022a. Bookdown: Authoring Books and Technical Documents with r Markdown.
https://CRAN.R-project.org/package=bookdown.

———. 2022b. Knitr: A General-Purpose Package for Dynamic Report Generation in r.
https://yihui.org/knitr/.

Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018. R Markdown: The Definitive Guide. Boca
Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown.

Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R Markdown Cookbook. Boca
Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown-cookbook.

https://cran.r-project.org/package=tidyverse
https://cran.r-project.org/package=tidyverse
https://doi.org/10.21105/joss.01686
https://cran.r-project.org/package=usethis
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=tidyr
https://cran.r-project.org/package=tidyr
https://cran.r-project.org/package=dbplyr
https://cran.r-project.org/package=readr
http://www.crcpress.com/product/isbn/9781466561595
https://yihui.org/knitr/
https://bookdown.org/yihui/bookdown
https://cran.r-project.org/package=bookdown
https://yihui.org/knitr/
https://bookdown.org/yihui/rmarkdown
https://bookdown.org/yihui/rmarkdown-cookbook

i NIST-developed software is provided by NIST as a public service. You may use, copy, and distribute copies of
the software in any medium, provided that you keep intact this entire notice. You may improve, modify, and
create derivative works of the software or any portion of the software, and you may copy and distribute such
modifications or works. Modified works should carry a notice stating that you changed the software and
should note the date and nature of any such change. Please explicitly acknowledge the National Institute of
Standards and Technology as the source of the software.

NIST-developed software is expressly provided "AS IS." NIST MAKES NO WARRANTY OF ANY KIND, EXPRESS,
IMPLIED, IN FACT, OR ARISING BY OPERATION OF LAW, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, AND
DATA ACCURACY. NIST NEITHER REPRESENTS NOR WARRANTS THAT THE OPERATION OF THE
SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT ANY DEFECTS WILL BE CORRECTED.
NIST DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OF THE SOFTWARE
OR THE RESULTS THEREOF, INCLUDING BUT NOT LIMITED TO THE CORRECTNESS, ACCURACY,
RELIABILITY, OR USEFULNESS OF THE SOFTWARE.

You are solely responsible for determining the appropriateness of using and distributing the software and
you assume all risks associated with its use, including but not limited to the risks and costs of program errors,
compliance with applicable laws, damage to or loss of data, programs or equipment, and the unavailability or
interruption of operation. This software is not intended to be used in any situation where a failure could
cause risk of injury or damage to property. The software developed by NIST employees is not subject to
copyright protection within the United States.
ii Any mention of commercial products within NIST web pages is for information only; it does not imply
recommendation or endorsement by NIST.

iii This release was tested on a fresh VMWare build of Ubuntu 20.04 LTS which carries several additional
system requirements. Prior to running DIMSpec, install or make sure the following are available using:apt
install -y build-essential libcurl4-openssl-dev libxml2-dev zlib1g-dev libssl-dev libsodium-dev ffmpeg libtiff-
dev libpng-dev libblas-dev liblapack-dev libarpack2-dev gfortran libcairo2-dev libx11-dev libharfbuzz-dev
libfribidi-dev libudunits2-dev libgeos-dev libgdal-dev libfftw3-3 libmagick++-devAfter following the R
installation instructions for Ubuntu, ensure additional requirements using:apt install -y –no-install-
recommends r-cran-tidyverse r-cran-shiny

iv Any mention of commercial products within NIST web pages is for information only; it does not imply
recommendation or endorsement by NIST.

v Requires R.exe is available in your system PATH

vi Any mention of commercial products within NIST web pages is for information only; it does not imply
recommendation or endorsement by NIST.

vii Requires R.exe is available in your system PATH

https://cran.r-project.org/bin/linux/ubuntu

	Preface
	Introduction
	Contributors
	Contributing
	About this Book

	Instructions
	Installation
	System Requirements
	Initial Setup

	Project Directory
	Project Set Up
	Step 1 - Customize global environment settings
	Step 2 - Customize R session settings in the “env_R.R” file
	Step 3 - Customize logger settings in the “env_logger.R” file

	Using DIMSpec
	Database Connections
	Connecting to an Existing Database
	Creating a New Database
	Connecting to Multiple Databases

	Using a Database Connection in an R Session
	Inspecting Database Properties
	Using the Application Programming Interface (API)
	Using rdkit
	Logging
	Using Shiny Applications
	Importing Data
	Ending Your Session
	Updating the Schema

	Technical Details
	Database Schema
	SQL Nodes
	The Analyte Node
	The Contributors Node
	The Data Node
	The Logging Node
	The Methods Node
	The Reference Node
	Script Generated Views and Triggers

	Populating Data at Build
	Compute Environments
	Shiny Applications
	Table Explorer
	Mass Spectral Match (MSMatch)
	DIMSpec Quality Control (MSQC)

	Logger
	Plumber
	Python
	Importing Data
	Future Development

	Conclusions
	Shiny Web Applications
	Table Explorer
	Table Viewer
	Entity Relationship Diagram

	DIMSpec Quality Control (MSQC)
	Introduction
	Set Up Instructions
	Input File Format Requirements
	Non-Targeted Analysis Method Reporting Tool
	Launching MSQC

	Using MSQC
	Step 0 - Modify quality control settings (optional)
	Step 1 - Import mzML and Sample JSON Files
	Step 2 - Process Data
	Step 3 - Review QC Results
	Step 4 - Export Data
	Step 5 - Closing Down

	Technical Details
	JSON Schema
	Quality Control Evaluation

	Application Settings
	Future Development
	Conclusions
	Appendices
	Example Sample JSON Schema
	Example Peak JSON Schema Extension

	Mass Spectral Match (MSMatch)
	Introduction
	Set Up Instructions
	Input File Format Requirements
	Launching MSMatch

	Using MSMatch
	Step 1. Load an mzML Data File
	Step 2. Identify Features of Interest
	Step 3. Generate the Search Object
	Step 4. Explore Results
	Match Compounds
	Match Fragments

	Step 5. Closing Down

	Technical Details
	Mass Spectral Search Object
	Compound and Fragment Match Algorithms
	Application Settings
	Future Development

	Conclusions

	References

